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Abstract: In this paper, we introduce an N = 1 supersymmetric SYK model with SO(q)
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model. At strong coupling limit, this model exhibits a super-reparametrization symmetry,

and the SO(q) global symmetry is enhanced to a ŜO(q) local symmetry. The correspond-

ing symmetry algebra is the semi-direct product of the super-Virasoro and the super-Kac-

Moody algebras. These emergent symmetries are spontaneously and explicitly broken,

which leads to a low energy effective action: super-Schwarzian action plus an action of a

super-particle on the SO(q) group manifold. We analyze the zero mode contributions to the

chaotic behavior of four point functions in various SO(q) channels. In singlet channel, we

show that the out-of-time-ordered correlators related to bosonic bi-locals exhibit the satu-

ration of the chaos bound as in the non-SUSY SYK model. On the other hand, we find that

the ones with fermionic bi-locals in the singlet channel have π
β Lyapunov exponent. In the

anti-symmetric channel, we demonstrate that the out-of-time-ordered correlator related to
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which give consistent corrections to the leading Lyapunov exponents from the zero modes.
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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model proposed in [1–3] consists of N Majorana fermions

with disordered interactions. The model exhibits emergent reparametrization symmetry

at strong coupling limit [2–7] and saturates [2, 3, 6] the chaos bound [8]. The possible

connection to black hole physics has generated great interest recently [9–18]. There have

been proposals for gravity duals which capture various features of the SYK model: dilaton

gravity1 [23–25], the supersymmetric version of Jackiw-Teitelboim model [26], the Liouville

theory [27] and the 3D gravity [28, 29]. Also, see [30, 31] for the implication of the higher

point functions for the bulk duals. The saturation of the chaos bound also has been

observed in unitary quantum mechanical models without disorder which are called “SYK-

like” tensor models [32–34]. The various aspects of the tensor models has been explored [35–

48] including finite N numerical analysis [49–52]. Also, N = 1 supersymmetric tensor

model was introduced in [53].

The original SYK model has been generalized in various directions. For example, the

higher dimensional generalizations have been studied in [54–56], and the complex SYK

model with U(1) symmetry [57–60] has been discussed. The flavor generalization proposed

by [61] enriched the structure of the model. In particular, the SYK model with non-abelian

global symmetries was worked out in [62] (see [63] for SO(3) case). On the other hand, the

supersymmetric generalization of SYK model [56, 64–66] (see [67] for some earlier work)

and its random matrix behavior was investigated in [68, 69].

In this paper, we introduce N = 1 supersymmetric SYK model with SO(q) global

symmetry, which can be thought either as the supersymmetric generalization of the SYK

model with global symmetry [62] or as flavour symmetry generalization of the N = 1 super-

symmetric SYK model [56, 64–66]. At strong coupling limit, the global SO(q) symmetry is

enhanced to the local ŜO(q) symmetry together with the emergent super-reparametrization

symmetry which was already found in N = 1 SUSY SYK model [64]. The correspond-

ing symmetry algebra is the semi-direct product of the super-Virasoro algebra and the

super-Kac-Moody algebra. These emergent symmetries are spontaneously broken by the

large N classical solution and are explicitly broken by the kinetic term at finite coupling,

which leads to Pseudo-Nambu-Goldstone boson. We found that the effective action is the

super-Schwarzian action plus an action of a superparticle on the SO(q) group manifold.

(section 3.6) i.e.,

Seff ≡ −NαSDiff

J

∫
dτdθ 2 SSch[f, y; τ, θ]− NαSO(q)

J

∫
dτdθ

1

2k
tr

[
J DJ +

1

k
J 3

]
(1.1)

where SSch[f, y; τ, θ] ≡
[
D
4y
Dy − 2D

2yD3y
[Dy]2

]
is the super-Schwarzian derivative and J =

−kDgg−1 is the SO(q) super-current. Although the previous works [53, 56, 64] have studied

the SUSY SYK model, the full analysis of the chaotic behavior2 has not been carried out.

In particular, the contribution of the fermionic zero mode in the super-Schwarzian effective

action to the Lyapunov exponent has not been worked out. In this paper, we will perform a

1See also various related works on 2D dilaton gravity [19–22].
2See [53] for the analysis of the chaotic behavior related to the bosonic zero mode.
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Channel Zero Mode Non-zero Mode

Singlet
〈χiχi χjχj〉,〈χiχi bjbj〉,〈bibi bjbj〉 βJe

2π
β
t t

β
e

2π
β
t

〈biχi bjχj〉 βJe
π
β
t t

β
e

π
β
t

Anti
〈χiχi χjχj〉 Jt

t

β

〈χiχi bjbj〉,〈bibi bjbj〉,〈biχi bjχj〉 No Growth

Symmetric-traceless No Growth

Table 1. Summary of the large time behavior of the out-of-time-ordered correlators in each SO(q)

channel. Here, we omitted the SO(q) indices in the four point functions.

more complete analysis on the chaotic behaviors of our model of which the singlet channel

corresponds to N = 1 SUSY SYK model. We will now outline main results regarding

Lyapunov exponent below.

Using the effective action, we evaluate (see section 6.2) the large time behavior of the

out-of-time-ordered correlators, which give the leading Lyapunov exponents. In addition,

we also calculate (see section 6.3) the contribution of the non-zero modes to the out-of-

time-ordered correlators in order to find the correction to the Lyapunov exponent. We

present the summary of the result in the table 1.

The bosonic zero mode of the super-reparametrization (which would correspond to

the boundary graviton in the bulk dual.) is coupled to the bosonic bi-locals (e.g., χχ)

in the singlet channel, which gives the maximal Lyapunov exponent λ
(2)
L = 2π

β . On the

other hand, the fermionic zero mode of the super-reparametrization (boundary gravitino

in the bulk dual) is coupled only to the fermionic bi-locals (e.g., bχ) in the singlet channel

because of the Fermi statistics. This leads to the Lyapunov exponent λ
( 3
2
)

L = π
β . The

bosonic zero mode of the ŜO(q) local symmetry is coupled to the bi-local field χχ in

the anti-symmetric channel, and it would be a boundary gauge field in the bulk dual.

This zero mode gives the linear growth in time (λ
(1)
L = 0) of the out-of-time-ordered

correlator. This is analogous to the linear growth found in [45, 62]. The fermionic zero

mode (gaugino in the bulk dual) of the local symmetry is coupled to the fermionic bi-locals

in the anti-symmetric channel, but it does not lead to the exponential growth in large

t. Assuming holographic duals, our result is analogous to the formula for the Lyapunov

exponent of higher spin current of integer spin s in CFT2 [70]:

λ
(s)
L =

2π

β
(s− 1) (1.2)

where s = 2, 32 , 1,
1
2 for our case.

These zero mode contributions are consistent with those of the non-zero modes.

Namely, if and only if a four point function is coupled to the zero mode to have an ex-

ponential growth, it also gets the contribution from the non-zero modes with the same

exponential growth rate. Moreover, this non-zero mode contribution gives the correction

to the Lyapunov exponent from the zero mode.

– 3 –
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The outline of this paper is as follows. In section 2, we revise the generalized SYK

model with flavor [61]. In particular, we focus on two type of the SYK models with SO(q)

global symmetry. We also review the N = 1 supersymmetric SYK model [64] and its

supermatrix formulation [66].

In section 3, we extend the supermatrix formulation with the flavor space in which

bi-local fields becomes a matrix in the extended bi-local superspace (τ1, θ1, α1; τ2, θ2, α2).

Then, we introduce the N = 1 supersymmetric SYK model with SO(q) global symmetry.

After disorder average, we derive the bi-local collective action of our model in large N . We

discuss the emergent super-reparametrization and the enhanced ŜO(q) local symmetry at

strong coupling limit, and we show that its symmetry algebra is the semi-direct product

of super-Virasoro algebra and super-Kac-Moody algebra. These emergent symmetries are

spontaneously and explicitly broken to lead to the low energy effective action: super-

Schwarzian action and an action of a super-particle on the SO(q) group manifold.

In section 4, we discuss the large N expansion of the bi-local collective action. Expand-

ing the bi-local superfield around the large N classical solution, we obtain the quadratic

action for fluctuations. We derive the Schwinger-Dyson equation for the two point func-

tions of the bi-local fluctuations, which corresponds to the Schwinger-Dyson equation for

the four point function of the SYK superfields. Following [56], we discuss the conformal

eigenfunctions for the four point functions of our model, and we expand the four point

functions in terms of the conformal eigenfunctions.

In section 5, we analyze the spectrum and OPE coefficients of our model.

In section 6, from the quadratic low energy effective action, we evaluate the zero mode

contribution to the large time behavior of the out-of-time-ordered correlators. Also, we

calculate the non-zero mode contribution to the out-of-time-ordered correlators, which

gives the 1
βJ correction to the zero mode contribution.

In section 7, we make concluding remarks and present the future directions.

In appendix A, we provide a summary of the notation and the convention in this paper.

In appendix B, we review the shadow representation for the conformal eigenfunctions for

four point functions of SYK models. In appendix C, we derive the effective action for the

zero modes from the broken super-reparametrization and broken ŜO(q) local symmetry by

using ǫ-expansion. In appendix D, we present the zero mode eigenfunction and their inner

products.

2 Review

2.1 Generalized SYK model with flavor revisited

We begin with the generalized SYK model with flavor [14, 61, 62]. We consider q flavors

of N Majorana fermions:

χiα(τ) ( i = 1, 2, · · · , N and α = 1, 2, · · · , q ) . (2.1)

The Majorana fermion transforms in the fundamental representation of SO(q)

χiα(τ) −→ gαα′

χiα′

(τ) ( g ∈ SO(q) ) . (2.2)

– 4 –
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One can construct SO(q) invariant interaction for the generalized SYK model by using the

two SO(q) invariant tensors: ǫα1α2···αq and δα1α2 . The simplest SO(q) invariant actions3

are given by

Sǫ =

∫
dτ

[
1

2
χiα∂τχ

iα + i
q
2J ǫ

i1...iqχ
i1α1χi2α2 . . . χiqαqǫα1α2···αq

]
, (2.3)

Sδ =

∫
dτ

[
1

2
χiα∂τχ

iα + i
q
2Jδ

i1...iqχ
i1α1χi2α2 . . . χiqαqδα1α2 · · · δαq−1αq

]
(2.4)

where J ǫ
i1···iq

and Jδ
i1···iq

is a random coupling constant drawn from the Gaussian distribution

Pǫ = exp

[
−q!N q−1

J2
J ǫ
i1···iqJ

ǫ
i1···iq

]
, (2.5)

Pδ = exp


−q

q
2N q−1

2J2

N∑

i1,··· ,iq=1

Jδ
i1···iqJ

δ
i1···iq


 , (2.6)

respectively. Note that we do not restrict the symmetry of the random coupling constants.

The random coupling constant Ji1···iq can be decomposed by Sq symmetry of the indices

i1, · · · , iq. Depending on the tensors δ’s and ǫ’s in the interaction, only particular Sq

representations of Ji1···iq give a contribution to the action. For example, the symmetric

part of J ǫ
i1···iq

in the indices give a contribution to the action. We define the bi-local field

Ψ(τ1, τ2) by

[Ψ(τ1, τ2)]
α1α2 ≡ 1

N

N∑

i=1

χiα1(τ1)χ
iα2(τ2) , (2.7)

One may treat the bi-local field [Ψ(τ1, τ2)]
α1α2 as a matrix in (τ, α), and the corresponding

matrix product is given by

(A ◦B)(τ1, α1; τ2, α2) ≡
q∑

α3=1

∫
dτ3 A(τ1, α1; τ3, α3)B(τ3, α3; τ2, α2) . (2.8)

Also, it is sometimes convenient to think of the bi-local field Ψ(τ1, τ2) as a q× q matrix of

bi-local fields. After the disorder average,4 one can derive the collective actions [5, 62]:

Sǫ
col =

N

2
Tr [−D ◦Ψ+ logΨ]− NJ2

2

∫
dτ1dτ2 det [Ψ(τ1, τ2)] (2.9)

Sδ
col =

N

2
Tr [−D ◦Ψ+ logΨ]− NJ2

2q
q
2

∫
dτ1dτ2 [tr (−Ψ(τ1, τ2)Ψ(τ2, τ1))]

q/2 (2.10)

3In general, one can also build SO(q) invariant interactions by using Sq/2 character and δ’s [62]. Fur-

thermore, one may mix both δ’s and ǫ’s for the interaction.
4One has to perform the quenched disorder average by using the replica trick. For this, one can apply

the bi-local replica collective field theory to this model [5], and take replica symmetry ansatz. Or, one can

treat the random coupling constant as a (non-dynamical) additional field [12, 71]. In large N , the quenched

average and the annealed average for the SYK model are shown to be equivalent [14].

– 5 –
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where Tr and log is the trace and the log of a matrix in the (τ, θ) space, respectively. On

the other hand, det and tr in the interaction terms is the determinant and the trace of a

q × q matrix, respectively. In addition, the bi-local derivative is defined by

D(τ1, α1; τ2, α2) ≡ I∂τ1δ(τ1 − τ2) (2.11)

where I is the q × q identity matrix. Note that the second term N
2 |Tr logΨ corresponds

to the Jacobian in the Hubbard-Stratonovich type transformation from the fundamental

fermion to the bi-local field [5, 62, 72, 73]. In large N , one can derive the large N sad-

dle point equation which corresponds to the Schwinger-Dyson equation for the two point

function of fermions [62]. At strong coupling limit |Jτ | ≫ 1, the saddle point equation has

emergent reparametrization symmetry, and the SO(q) invariant classical solution is found

to be

Ψcl(τ1, τ2) = Ψcl(τ1, τ2)I = Λ
sgn (τ12)

|τ12|
2
q

I (2.12)

where the coefficient Λ is given by

J2Λqπ =

(
1

2
− 1

q

)
tan

π

q
(2.13)

Expanding the bi-local field Ψ around the classical solution, one can derive the quadratic

action for the fluctuations [62]. Since the fermion is transformed in the fundamental repre-

sentation of SO(q), the bi-local fluctuation can be decomposed into singlet, anti-symmetric

and symmetric-traceless representations:

⊗ = S ⊕ A ⊕ ST . (2.14)

At quadratic level, the fluctuations of different representations are decoupled, and one can

easily derive the Schwinger-Dyson equations for the two point function FC (C = S, A, ST)

of the bi-local fluctuations, which is four point function of fermions.

FC −F0,−σ(C) = KC ∗ FC (C = S , A , ST) (2.15)

where σ(C) is the sign of the representation C. (i.e., σ(S) = σ(ST) = +, σ(A) = −) Then,

the four point function FC is a geometric series of which the common ratio KC and the first

term F0,−σ(C) are given by

KC ≡ −ΞCJ2Ψcl(τ1, τ3)Ψcl(τ2, τ4)[Ψcl(τ3, τ4)]
q−2 (C = S , A , ST) (2.16)

F0,∓ ≡ ∓Ψcl(τ1, τ3)Ψcl(τ2, τ4) + Ψcl(τ1, τ4)Ψcl(τ2, τ3) (2.17)

where the coefficient ΞC is found to be

Ξǫ
S
= (q − 1) , Ξǫ

A
= 1 , Ξǫ

ST
= −1 (2.18)

Ξδ
S
= (q − 1) , Ξδ

A
= 1 , Ξδ

ST
= 1 (2.19)

Note that the coefficient of the common ratio KC plays an important role in determining

the spectrum and the Lyapunov exponent. In the singlet and the anti-symmetric represen-

tation, the spectrum and the Lyapunov exponent of the interaction with δ’s is identical to

– 6 –
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that of the interaction with ǫ. On the other hand, the spectrum of the symmetric traceless

representation of δ interaction is different from that of ǫ interaction. Nevertheless, the

out-of-time-ordered correlators of both interactions exponentially decay. We refer readers

to [62] for details of the δ interaction.

2.2 Supersymmetric SYK model and supermatrix formulation

In this section, we briefly review N = 1 SUSY SYK model [64] and the supermatrix

formulation of SUSY vector models [66]. The action of the N = 1 SUSY SYK model can

be written simply in the superspace as follow.

S =

∫
dτdθ

[
−1

2
ψiDψi + i

q−1
2 Ji1···iqψ

i1 · · ·ψiq

]
(2.20)

where D ≡ ∂θ + θ∂τ is super-derivative, and we define superfield ψi(τ, θ) with N Majorana

fermions χi and N non-dynamical auxiliary bosons bi by

ψi(τ, θ) ≡ χi(τ) + θbi(τ) (i = 1, 2, · · · , N) . (2.21)

Also, the random coupling constant Ji1···iq is drawn from the Gaussian distribution:

P = exp

[
−qN q−1

J
Ji1···iqJi1···iq

]
. (2.22)

In large N , it is useful to define a bi-local superfield by

Ψ(τ1, θ1; τ2, θ2) ≡
1

N

N∑

i=1

ψi(τ1, θ1)ψ
i(τ2, θ2) (2.23)

This bi-local superfield can be considered as a matrix in the superspace (τ, θ), and the

matrix multiplication is defined by [66] by

(A ⋆ B)(τ1, θ1; τ2, θ2) ≡
∫

A(τ1, θ1; τ3, θ3) dτ3dθ3 B(τ3, θ3; τ2, θ2) (2.24)

Note that the position of the measure is important since the bi-local superfield A and B

could be either Grassmann even or odd. Our convention on the position of measure is

simple and convenient the for matrix product. In derivation of the collective action and

the low energy effective action, it is convenient to utilize the matrix structure of the bi-

local superfield, which naturally leads to the supermatrix formulation [66]. Let us expand

a bi-local superfield A in components:

A(τ1, θ1; τ2, θ2) = A0(τ1, τ2) + θ1A1(τ1, τ2)−A2(τ1, τ2)θ2 − θ1A3(τ1, τ2)θ2 . (2.25)

Then, we define a supermatrix corresponding to the superfield A as follow.

A ≡
(
A1 A3

A0 A2

)
. (2.26)

– 7 –
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The bi-local superfield A can be either Grassmann even or odd so that the ordering of

the Grassmannian variables θ1, θ2 and the component fields Ai (i = 1, 2, 3) is important in

defining the supermatrix. It is crucial to note that the Grassmann even (odd) superfield

corresponds to the Grassmann odd (even) supermatrix, respectively.

In the supermatrix notation, the matrix product defined in (2.24) is simplified as a

matrix product of 2× 2 matrix:

(A ⋆ B) =

(
A1 ∗B1 +A3 ∗B0 A1 ∗B3 +A3 ∗B2

A0 ∗B1 +A2 ∗B0 A0 ∗B3 +A2 ∗B2

)
(2.27)

where the multiplication ∗ of the components is nothing but the matrix product of non-

SUSY bi-local fields:

(Ai ∗Bj)(τ1, τ2) ≡
∫

dτ3 Ai(τ1, τ3)Bj(τ3, τ2) (i, j = 0, 1, 2, 3) (2.28)

Note that the matrix product of two Grassmann even superfield gives Grassmann odd

superfield due to the Grassmann odd measure. This turns out to be more natural in su-

permatrix formulation because the matrix product of the two Grassmann odd supermatrix

is a Grassmann even supermatrix and vice versa. Hence, from now on, we refer to |A| as
the Grassmann signature of A as a supermatrix. i.e., |A| = +1 if A is Grassmann even

supermatrix and vice versa. Now, one can utilize all operations in the supermatrix. For

example, the super-trace is defined by

str (A) = ≈r (A1) + (−1)|A|
≈r (A2) =

∫
dτ1dθ1 A(τ1, θ1; τ1, θ1) (2.29)

where ≈r denotes the trace in the bi-local space (τ1, τ2) i.e., ≈r (Ai) =
∫
dτ1 Ai(τ1, τ1)

(i = 0, 1, 2, 3). After the disorder average, one can derive the collective action for the

N = 1 SUSY SYK model [66]:

Scol = −N

2
str [D ⋆Ψ] +

N

2
str logΨ− JN

2q

∫
dτ1dθ1dτ2dθ2[Ψ(τ1, θ1; τ2, θ2)]

q (2.30)

where the bi-local super-derivative is defined by

D(τ1, θ1; τ2, θ2) =

(
0 ∂1δ(τ1 − τ2)

δ(τ1 − τ2) 0

)
= Dθ1(θ1 − θ2)δ(τ1 − τ2) (2.31)

Note that N
2 str logΨ comes from the Jacobian of the transformation from the N superfield

ψi to the bi-local superfield Ψ (See [66] for details).

3 N = 1 SUSY SYK model with global symmetry

3.1 Extended supermatrix formulation

We will generalize the N = 1 supersymmetric SYK model by adding flavor to the N super-

field. For this, we first extend the bi-local superspace (τ1, θ1; τ2, θ2) to bi-local superspace

with extra flavor space:

(τ1, θ; τ2, θ2) −→ (τ1, θ1, α1; τ2, θ2, α2) (3.1)

– 8 –
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where θ’s are the Grassmannian coordinate and α’s are the flavour index (α =

1, 2, · · · , q). In this extended bi-local superspace, one can consider bi-local superfield

Aα1α2(τ1, θ1; τ2, θ2), and it is convenient to think of it as a q×q matrix A(τ1, θ1; τ2, θ2). i.e.,

[A(τ1, θ1; τ2, θ2)]
α1α2 ≡ Aα1α2(τ1, θ1; τ2, θ2) . (3.2)

We use the convention that an object written in bold (e.g., A) is a q × q matrix. We

define a matrix product ⊛ for the extended bi-local superspace such that

(A⊛B)α1α2(τ1, θ1; τ2, θ2) ≡
q∑

α3=1

∫
(A)α1α3(τ1, θ1; τ3, θ3)dτ3dθ3(B)α3α2(τ3, θ3; τ2, θ2) .

(3.3)

Expanding a bi-local superfield into component fields, one can represent it as a supermatrix

like the N = 1 SUSY SYK model in section 2.2:

A(τ1, θ1; τ2, θ2) = A0(τ1, τ2) + θ1A1(τ1, τ2)−A2(τ1, τ2)θ2 − θ1A3(τ1, τ2)θ2

=

(
A1(τ1, τ2) A3(τ1, τ2)

A0(τ1, τ2) A2(τ1, τ2)

)
(3.4)

where the lowest component A0 could be either Grassmann even or odd. This choice of

the signs and the ordering of Grassmann variables will lead to a natural definition of a

supermatrix and its multiplication. Note that a Grassmann odd superfield is mapped to a

Grassmann even supermatrix, and vice versa as before. In this supermatrix representation,

the matrix product of two bi-local superfield in (3.3) becomes the usual (2q × 2q) matrix

product:

(A⊛B) =

(
A1 A3

A0 A2

)
⊛

(
B1 B3

B0 B2

)

=

(
A1 ◦B1 +A3 ◦B0 A1 ◦B3 +A3 ◦B2

A0 ◦B1 +A2 ◦B0 A0 ◦B3 +A2 ◦B2

)
(3.5)

where the matrix product ◦ for the component bi-local fields is defined in (2.8). i.e.,

(Ai ◦Bj)
α1α2(τ1, τ2) ≡

q∑

α3=1

∫
dτ3[Ai(τ1, τ3)]

α1α3 [Bj(τ3, τ2)]
α3α2 (3.6)

One can easily see that the identity supermatrix gives the expected delta function in the

extended bi-local superspace. i.e.,

III
α1α2(τ1, θ1; τ2, θ2) ≡

(
δα1α2δ(τ1 − τ2) 0

0 δα1α2δ(τ1 − τ2)

)
= (θ1 − θ2)δ(τ1 − τ2)δ

α1,α2 (3.7)

Furthermore, the natural definition of the trace in the extended bi-local superspace is

consistent with the supertrace of a supermatrix. i.e.,
∑

α

∫
dτ1dθ1dτ2δ(τ12) [A0(τ1, τ2) + θ1A1(τ1, τ2)−A2(τ1, τ2)θ1]

αα

= TrA1 − (−1)|A|TrA2 = STrA (3.8)
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where (−1)|A| is 1 if A is Grassmann even supermatrix and (−1)|A| is −1 if A is Grassmann

odd supermatrix. Note that the properties of the supermatrix will automatically holds. e.g.,

STr (A⊛B) = (−1)|A|·|B|STr (B ⊛A) (3.9)

3.2 N = 1 SUSY SYK model with global symmetry

The action of N = 1 SUSY SYK model with global symmetry is given by

S =

∫
dτdθ

[
−1

2
ψiαDψiα + i

q−1
2 Ji1···iqψ

i1α1 · · ·ψiqαqǫα1···αq

]
(3.10)

where q is odd integer (q ≧ 3).5 The superfield ψiα(τ, θ) is defined by

ψiα(τ, θ) ≡ χiα(τ) + θbiα(τ) (3.11)

where χiα(τ) and biα(τ) are qN Majorana fermions and qN auxiliary bosons, respectively

(i = 1, 2, · · · , N and α = 1, 2, · · · , q). The superfield ψiα(τ) transforms in the fundamental

representation of O(N) and SO(q). i.e.,

ψiα(τ, θ) −→ Oijψjα(τ, θ)

ψiα1(τ, θ) −→ gα1α2ψiα2(τ, θ) (3.12)

where Oij is an O(N) matrix, and g is an SO(q) matrix. Note that the action is invariant

under the (global) SO(q) transformation. Ji1···iq is the random coupling constant drawn

from the Gaussian ensemble

exp

[
−q!N q−1

J
Ji1···iqJi1···iq

]
. (3.13)

We define a bi-local superfield by

Ψα1α2(τ1, θ1; τ2, θ2) ≡
1

N

N∑

i=1

ψiα1(τ1, θ1)ψ
iα2(τ2, θ2) (3.14)

Note that the bi-local superfield Ψ(τ1, θ1; τ2, θ2) is anti-symmetric in the extended bi-local

superspace. i.e.,

Ψα1α2(τ1, θ1; τ2, θ2) = −Ψα2α1(τ2, θ2; τ1, θ1) . (3.15)

In the supermatrix representation, the bi-local superfield Ψ reads

Ψα1α2(τ1, θ1; τ2, θ2) =
1

N

N∑

i=1

(
biα1(τ1)χ

iα2(τ2) −biα1(τ1)b
iα2(τ2)

χiα1(τ1)χ
iα2(τ2) −χiα1(τ1)b

iα2(τ2)

)
(3.16)

The Jacobian which takes from the superfield ψi to the bi-local field Ψ is given by [66]

logJ = −N − 1

2
STr logΨ (3.17)

5q is odd since superspace Lagrangian needs to be Grassmann odd.
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where STr is defined in (3.8). It is useful to define a super-derivative matrix:

[D]α1α2(τ1, θ1; τ2, θ2) ≡ δα1α2Dθ1(θ1 − θ2)δ(τ1 − τ2)

=

(
0 δα1α2∂1δ(τ1 − τ2)

δα1α2δ(τ1 − τ2) 0

)
(3.18)

where Dθ = ∂θ + θ∂τ is the super-derivative. Note that the super-derivative matrix D is

Grassmann odd supermatrix. Using the super-derivative matrix, one can easily check that

D⊛A(τ1, θ1; τ2, θ2) =

(
∂τ1A0(τ1, τ2) ∂τ1A2(τ1, τ2)

A1 A3

)
, (3.19)

and therefore, its supertrace leads to the kinetic term:

NSTr (D⊛Ψ) =
∑

α

∫
dτ

[
−χiα(τ)∂τχ

iα(τ) + biα(τ)biα(τ)
]

=
∑

α

∫
dτdθψiα(τ, θ)Dθψ

iα(τ, θ)

(3.20)

After disorder average, the collective action can be written as

Scol = −N

2
STr [D⊛Ψ]+

N

2
STr logΨ+

JN

2

∫
dτ1dθ1dτ2dθ2 det[Ψ(τ1, θ1; τ2, θ2)] (3.21)

where det[Ψ] is a determinant of the q × q matrix Ψ.

3.3 Emergent symmetry

In strong coupling limit |Jτ | ≫ 1, the collective action in (3.21) has emergent symmetries

including the super-reparametrization symmetry in theN = 1 supersymmetric SYK model.

We define a critical collective action Scritical as follows.

Scritical ≡ −N

2
STr logΨ+

JN

2

∫
dτ1dθ1dτ2dθ2 det[Ψ(τ1, θ1; τ2, θ2)] (3.22)

First, we consider the super-reparametrization (τ, θ) −→ (τ ′, θ′) given by [64]

τ ′ = f(τ + θη(τ)) , θ′ =
√
∂τf(τ)

[
θ + η(τ) +

1

2
θη(τ)∂τη(τ)

]
(3.23)

where f(τ) and η(τ) is an arbitrary bosonic and fermionic function of τ , respectively. This

transformation satisfies

Dθ = Dθθ
′ Dθ′ (3.24)

and, the Jacobian can be simplified by

Ber

(
∂ττ

′ ∂τθ
′

∂θτ
′ ∂θθ

′

)
= Dθθ

′ (3.25)

– 11 –



J
H
E
P
0
8
(
2
0
1
8
)
1
5
9

For now, it is convenient to parametrize the super-reparametrization as τ ′ = f(τ, θ) and

θ′ = y(τ, θ) with constraint (3.24) so that the Jacobian is still Dθy. Then, the critical

collective action in (3.22) is invariant under the following transformation of the bi-local

superfield Ψ:6

Ψ(τ1, θ1; τ2, θ2) −→ Ψ(f,y)(τ1, θ1; τ2, θ2) ≡ [D1y1]
1
qΨ(f1, y1; f2, y2)[D2y2]

1
q (3.26)

where fi ≡ f(τi, θi), yi ≡ y(τi, θi) (i = 1, 2). In addition to the super-reparametrization, the

global SO(q) symmetry of the collective action is enhanced to the local ŜO(q) symmetry in

strong coupling limit. This is analogous to the local symmetry in [62], but in this case, the

ŜO(q) local transformation is parametrized not only by τ but also by the Grassmannian

coordinate θ. For this, let us introduce a q × q matrix g(τ, θ) given by

g(τ, θ) ≡ h(τ) + θk(τ)h(τ) = eθk(τ)h(τ) (3.27)

where h(τ, θ) is a (bosonic) SO(q) matrix. i.e.,

h(τ)ht(τ) = I , deth = 1 (3.28)

where I is the q × q identity matrix. On the other hand, k(τ) is a q × q (fermionic)

anti-symmetric matrix. i.e.,

kt(τ) = −k(τ) (3.29)

Hence, it is easy to see that the matrix g(τ, θ) is also SO(q) matrix:

gt(τ, θ) = ht(I + θkt) = h−1(I − θk) = g−1 (3.30)

and

det g = exp [tr log(I + θk)] = 1 (3.31)

Then, one can consider a local transformation of the superfield ψiα by the matrix g(τ, θ):

ψiα1(τ, θ) −→
q∑

α2=1

gα1α2(τ, θ)ψiα2(τ, θ) (3.32)

Accordingly, the bi-local field is transformed as follows.

Ψ(τ1, θ1; τ2, θ2) −→ g(τ1, θ1)Ψ(τ1, θ1; τ2, θ2)g
−1(τ2, θ2) (3.33)

Under this SO(q) local transformation, the critical collective action (3.22) is also invari-

ant because of the q × q determinant and the supertrace STr for the extended bi-local

superspace. Therefore, together with the super-reparametrization, the critical collective

action (3.22) is invariant under the transformation:

Ψ(τ1, θ1; τ2, θ2) (3.34)

−→ Ψ[(f,y),g](τ1, θ1; τ2, θ2) ≡ [D1y1]
1
q g(τ1, θ1)Ψ(f1, y1; f2, y2)g

−1(τ2, θ2)[D2y2]
1
q

where fi ≡ f(τi, θi), yi ≡ y(τi, θi) (i = 1, 2).

6Strictly speaking, the first term in (3.24) shifts by a field independent terms which will not be relevant

for discussions below.
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3.4 Super-reparametrization and super Kac-Moody algebra

We will now determine the algebra obeyed by the group of transformations given in (3.34),

which we will call SDiff⋉ ŜO(q). To do this, first note that the infinitesimal action of the

transformations are parametrized by

f(τ) = τ+ǫ(τ)+θη(τ) , y = θ+η(τ)+
θ

2
∂τ ǫ(τ) , g(τ, θ) = I+ iρρρ(τ)+θkkk(τ) (3.35)

Note that ρρρ is obviously an element in the algebra of so(q), whereas kkkt = −kkk and hence can

be expanded in the basis of so(q) adjoint generator matrices. If the corresponding modes

are labelled by

ǫ(τ) =
∑

n∈Z

ǫnτ
n+1 , η(τ) =

∑

r∈ 1
2
+Z

ηrτ
r+ 1

2 ,

ρρρ(τ) =
∑

n∈Z

ρanT
aτn , kkk(τ) =

∑

r∈ 1
2
+Z

karT
aτ r−

1
2 (3.36)

and define the infinitesimal generators Ln, Gr, J
a
n , F

a
r via

δǫ,η = −
∑

n∈Z

ǫnLn +
∑

r∈ 1
2
+Z

ηrGr + i
∑

n∈Z

ρanJ
a
n +

∑

r∈ 1
2
+Z

karF
a
r (3.37)

then the action given in (3.35) can be realized as

Ln = −
(
τn+1∂τ +

(n+ 1)

2
τnθ∂θ

)
, Gr = τ r+

1
2 (∂θ − θ∂τ ) (3.38)

Ja
n = T aτn , F a

r = −θT aτ r−
1
2 (3.39)

where T a are the algebra generators which obey [T a,T b] = ifabcT c. One can check that

these generators satisfy the algebra

[Lm, Ln] = (m− n)Lm+n {Gr, Gs} = 2Lr+s [Lm, Gs] =
(m
2

− s
)
Gm+s

[Ja
n, J

b
m] = ifabcJc

n+m [Ln, J
a
m] = −mJa

n+m [Ln, F
a
r ] = −

(
r +

n

2

)
F a
n+r (3.40)

[Ja
n, F

b
r ] = ifabcF c

n+r {Gs, F
a
r } = −Ja

r+s [Gs, J
a
n] = nF a

n+s

{F a
r , F

b
s } = 0

with all the other commutator/anti-commutators vanishing. Note that the modes L0,

L±, G± 1
2
together with Ja

0 generates osp(1|2) × so(q) subalgebra which forms the global

symmetry. For completeness, we record below the group composition action on the Ψ.

Ψ(τ1, θ1; τ2, θ2)
[(f ′,y′),g′]·[(f,y),g]−−−−−−−−−−−→ Ψ[(f ′,y′),g′]·[(f,y),g](τ1, θ1; τ2, θ2)

Ψ[(f ′,y′),g′]·[(f,y),g](τ1, θ1; τ2, θ2) ≡ [Dθ1y
′
1Dy′1y1]

1
q [g′(τ1, θ1)g(f

′
1, y

′
1)]

×Ψ(f(f ′
1, y

′
1), y(f

′
1, y

′
1); f(f

′
2, y

′
2), y(f

′
2, y

′
2))

× [g′(τ2, θ2)g(f2, y2)]
−1[Dθ2y

′
1Dy′2y2]

1
q

(3.41)
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where all objects are thought of as functions of τ, θ. We then have the following transfor-

mation law

[(f ′, y′), g′] · [(f, y), g] = [(f, y) ◦ (f ′, y′), g′(τ, θ)g(f ′, y′)] (3.42)

where (τ, θ)
(f,y)◦(f ′,y′)−−−−−−−→ ( f(f ′(τ, θ), y′(τ, θ)) , y(f ′(τ, θ), y′(τ, θ)) ). One can also use this

to obtain the algebra7

3.5 Large N classical solution

By varying the collective action (3.21) with respect to the bi-local superfield Ψ, we obtain

the large N saddle point equation. Then, multiplying another bi-local field Ψ to the saddle

point equation, we have

(D⊛Ψ)αγ(1, 2) + J
ǫαα2···αqǫµγ2···γq

(q − 1)!

∫
dµ3 Ψ

α2γ2(1, 3) · · ·Ψαqγq(1, 3)Ψµγ(3, 2)

= δαγ(θ1 − θ2)δ(τ12) . (3.44)

where the measure dµ3 is defined by dτ3dθ3. Note that the large N saddle point equa-

tion (3.44) corresponds to the Schwinger-Dyson equation for the two point function of the

fermion superfield. In strong coupling limit |Jτ | ≫ 1, one can drop the first term of the

saddle point equation (3.44) which comes from the kinetic term. To solve the saddle point

equation in the strong coupling limit, we take an SO(q) invariant ansatz:

Ψcl(τ1, θ1; τ2, θ2) = Ψcl(τ1, θ1; τ2, θ2) I . (3.45)

where I is the q × q identity matrix. Then, the saddle point equation (3.44) is reduced to

(θ1 − θ2)δ(τ12)− J

∫
dτ3dθ3[Ψcl(τ1, θ1; τ3, θ3)]

q−1Ψcl(τ3, θ3; τ2, θ2) = 0 (3.46)

This equation is identical to the Schwinger-Dyson equation for the N = 1 SUSY SYK

model, and the solution is given by [64]

Ψcl(τ1, θ1; τ2, θ2) = Λ
sgn (τ12)

|τ12 − θ1θ2|2∆
= Λ

{
sgn (τ12)

|τ12|2∆
+

2∆θ1θ2
|τ12|2∆+1

}
(3.47)

where ∆ ≡ 1
2q and the coefficient Λ is

Λq =
tanπ∆

2πJ
(3.48)

In supermatrix notation, the classical solution Ψ is Grassmann odd supermatrix repre-

sented by

Ψcl = Λ


 0 − 2∆

|τ12|2∆+1 I

sgn (τ12)
|τ12|2∆

I 0


 . (3.49)

7The commutator of two transformations is

δ[ǫ2,η2,ρρρ2,kkk2],[ǫ1,η1,ρρρ1,kkk1] = δ[ǫ2ǫ′1−ǫ1ǫ
′

2
+2η2η1 , 1

2
η2ǫ

′

1
+ǫ2η

′

1
− 1

2
ǫ′
2
η1−ǫ1η

′

2

,−iη2kkk1+iη1kkk2+ǫ2ρρρ
′

1
−ǫ1ρρρ

′

2
+i[ρρρ2,ρρρ1] , ǫ2kkk

′

1
−ǫ1kkk

′

2
+

ǫ′
2
kkk1−ǫ′

1
kkk2

2
+iη2ρρρ

′

1
−iη1ρρρ

′

2
+i[kkk2,ρρρ1]−i[kkk1,ρρρ2]

(3.43)

which upon using the mode expansion (3.36) and the generators (3.37) results in the same algebra as

in (3.40).
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3.6 Low energy effective action

In the strong coupling limit |Jτ | ≫ 1, the collective action has the emergent super-

reparametrization and the ŜO(q) local symmetry. This emergent symmetries are bro-

ken spontaneously by the classical solution. Furthermore, moving away from the in-

finite coupling, the kinetic term, which we have ignored in the strict strong coupling

limit, also explicitly breaks the emergent symmetries. Hence, this leads to zero modes

(Pseudo-Nambu-Goldstone bosons) for the broken symmetries. Recall that the classical

solution by the super-reparametrization and the ŜO(q) local transformations parametrized

by (f(τ, θ), y(τ, θ)) and g(τ, θ), respectively:

Ψcl(τ1, θ1; τ2, θ2) −→ [D1y1]
1
q g(τ1, θ1)Ψcl(f1, y1; f2, y2)g

−1(τ2, θ2)[D2y2]
1
q (3.50)

where fi ≡ f(τi, θi), yi ≡ y(τi, θi) (i = 1, 2). In this subsection, we will derive the structure

of the low energy effective action governing the dynamics of these modes. Naively, one

might think that one can just substitute the transformed classical solution into the kinetic

term which explicitly breaks the super-reparametrization and the ŜO(q) local transfor-

mation to obtain this effective action. However, this turns out to be UV divergent in

the conformal regime and an accurate calculation of the overall coefficient of the effective

action requires details beyond the conformal regime [6, 15, 18, 74] (in particular for the

two point function). This can be addressed by re-solving the Schwinger-Dyson equation

beyond conformal regime either numerically [6, 10] or in some special limits (e.g., large

q limit [6, 58]). Another alternative is to use regularization schemes to control the UV

divergences (ǫ-regularization [5, 7], s-regularization [7], iǫ-prescription [15], delta function

regularization [74] and renormalization scheme [18, 75]). With these schemes, one still

needs to make sure that results are regularization independent.

Regardless of the details of the regularization schemes, the symmetry dictates the

structure of the low energy effective action. Since we are anyway interested in this structure

rather than the exact overall coefficient, we will proceed to use ǫ-regularization keeping in

mind the above caveats.8 Let us define the ǫ-expansion of q given by [5, 7] as

q =
1

1− ǫ
(3.51)

In appendix C, we derive the ǫ-expansion of the kinetic term with the transformed

classical solution. Then taking Seff ∼ STr [D⊛Ψ]ǫ−expansion (up to the caveats mentioned

above) leads to the low energy effective action:

Seff ≡ −NαSDiff

J

∫
dτdθ 2

[
D4y

Dy
− 2

D2yD3y

[Dy]2

]
− NαSO(q)

J

∫
dτdθ

1

2k
tr

[
J DJ +

1

k
J 3

]

(3.52)

Here, the super-current J (τ, θ) is defined9 by

J ≡ −k Dg · g−1 = −kk + θ (−k∂τh · h−1 − kkk) (3.53)

8From the perspective of the exact calculation, the ǫ-regularization suffers an additional drawback in the

sense that in this Gaussian limit the dynamics is not controlled by Schwarzian that we will eventually derive.
9We include the level k in the definition of the super-current as a bookkeeping parameter, and it does

not play any role in this paper.
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where g = eθkh. We reiterate that αSDiff and αSO(q) are independent numerical coefficients

which will not be determined in this work.

The first term of (3.52) is the super-Schwarzian action which appears in the N = 1

SUSY SYK model [64]. Using (3.23), the super-Schwarzian effective action reads

Seff,SDiff = −NαSDiff

J

∫
dτ

[
{f(τ), τ}(1− η(τ)∂τη(τ)) + η(τ)∂3

τη(τ) + 3∂τη(τ)∂
2
τη(τ)

]

(3.54)

where {f(τ), τ} is the Schwarzian derivative. On the other hand, the second term in (3.52)

is an action of a super-particle on the SO(q) group manifold which is analogous to the

effective action in the (non-SUSY) SYK model with global symmetry [62]. In particular,

in terms of the component fields of the ŜO(q) matrix

g(τ, θ) = eθk(τ)h(τ) = h(τ) + θk(τ)h(τ) , (3.55)

one can express the SO(q) effective action as

Seff,SO(q) = −NαSO(q)

J

∫
dτ tr

[
1

2
∂2
τh · h−1 +

1

2
∂τk · k +

1

2
k · ∂τh · h−1 · k

]
. (3.56)

Furthermore, defining a matrix M(τ) by

M(τ) ≡ P exp

[
−
∫ τ

h(τ ′)dτ ′
]
, (3.57)

one has

Seff,SO(q) = −NαSO(q)

J

∫
dτ tr

[
1

2
∂τM∂τM − 1

2
k∂τk − 1

4
k [∂τM ,k]

]
(3.58)

This is a supersymmetric q × q matrix model, and it would be interesting to study it as

the supersymmetric generalization of c = 1 matrix model.

4 Four point functions

4.1 Quadratic action

Recall that the collective action was

Scol = −N

2
STr [D⊛Ψ] +

N

2
STr logΨ+

JN

2

∫
dτ1dθ1dτ2dθ2 det[Ψ(τ1, θ1; τ2, θ2)] (4.1)

In this section, we will expand this collective action to quadratic order in fluctuations

around the large N classical solution presented in section (3.5). Since Ψ lies in the product

of two fundamental representation, it is natural to decompose the fluctuations into singlet,

anti-symmetric and symmetric-traceless representations of SO(N):

⊗ = S ⊕ A ⊕ ST . (4.2)

Accordingly, we expand the bi-local field Ψ around the large N classical solution as follows:

Ψ = Ψcl +

√
2

N
ζ
S
+

√
2

N
ζ
A
+

√
2

N
ζ
ST

(4.3)
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where the bi-local fluctuation ζC (C = S, A, ST) are given by

ζ
S
(τ1, θ1; τ2, θ2) =

1√
q
η(τ1, θ1; τ2, θ2)I (4.4)

ζ
A
(τ1, θ1; τ2, θ2) =

1√
2xA

ζa
A
(τ1, θ1; τ2, θ2)T

a
A

(4.5)

ζ
ST
(τ1, θ1; τ2, θ2) =

1√
2xST

ζa
ST
(τ1, θ1; τ2, θ2)T

a
ST

(4.6)

where T a
A
and T a

ST
are the generators in the anti-symmetric and symmetric-traceless rep-

resentations, respectively. Also, xR denotes the Dynkin index of the representation R of

SO(q). i.e.,

xR ≡ dim(R)C2(R)

2 dim(A)
(4.7)

where C2(R) is the Casimir of the representation R. Note that the generators T a
A
and T a

ST

are normalized in a way that

tr (T a
CT

b
C) = 2xCδ

ab (C = A, ST) (4.8)

Like the bi-local superfield Ψ (See (3.15)), the fluctuations ζC (C = S, A, ST) are also

anti-symmetric in the extended bi-local superspace. But, because of the properties of the

generators (i.e., (T a
A
)t = −T a

A
, (T a

ST
)t = T a

ST
), the symmetry of the component fluctuations

ζa
C
becomes

ζS(1, 2) = −ζS(2, 1) , ζ
a
A
(1, 2) = ζa

A
(2, 1) , ζa

ST
(1, 2) = −ζa

ST
(2, 1) (4.9)

where we use a short hand notation ζC(1, 2) ≡ ζC(τ1, θ1; τ2, θ2) (C = S, A, ST). The SO(q)

symmetry ensures that the bi-local fluctuations ζS, ζ
a
A
and ζa

ST
do not couple to each other

in the quadratic action. Indeed, expanding the collective action

Scol

[
Ψcl +

√
2/N(ζ

S
+ ζ

A
+ ζ

ST
)
]
= NS(0) + S(2)[ζ

S
, ζ

A
, ζ

ST
] +

1√
N

S(3)[ζ
S
, ζ

A
, ζ

ST
] + · · · ,
(4.10)

we find the quadratic collective action to be

S(2) = −1

2

∑

C=S,A,ST

str (Ψ−1
cl ⋆ ζC ⋆Ψ

−1
cl ⋆ ζC)

+
∑

C=S,A,ST

ΞCJ

2

∫
dµ1dµ2 [Ψcl(1, 2)]

q−2ζC(1, 2)ζC(1, 2) (4.11)

where the measure is defined by dµi ≡ dτidθi (i = 1, 2) and Ψcl has been given in (3.47)

(i.e., Ψcl = ΨclI). In addition, the numerical constants ΞC (C = S, A, ST) are

ΞS = (q − 1) , ΞA = −1 , ΞST = −1 (4.12)

These numerical constants are important in analyzing the spectrum and the chaotic be-

havior.
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Now, we will derive the Schwinger-Dyson equation for two point functions of the bi-

local fluctuation defined10 by

FS(τ1, θ1, τ2, θ2; τ3, θ3, τ4, θ4) ≡ 2 〈ζS(τ1, θ1; τ2, θ2)ζS(τ3, θ3; τ4, θ4)〉 , (4.13)

Fab
A
(τ1, θ1, τ2, θ2; τ3, θ3, τ4, θ4) ≡ 2

〈
ζa
A
(τ1, θ1; τ2, θ2)ζ

b
A
(τ3, θ3; τ4, θ4)

〉
, (4.14)

Fab
ST
(τ1, θ1, τ2, θ2; τ3, θ3, τ4, θ4) ≡ 2

〈
ζa
ST
(τ1, θ1; τ2, θ2)ζ

b
ST
(τ3, θ3; τ4, θ4)

〉
, (4.15)

which corresponds to the Schwinger-Dyson equation for four point functions of the fermi

superfield ψiα’s. Note that the four point function Fab
A/ST is proportional to δab because of

SO(q) symmetry. i.e.,

Fab
A

= δabFA , Fab
ST

= δabFST (4.16)

Hence, we will omit the index a in the derivation of the Schwinger-Dyson equation for

simplicity. Let us consider the following functional identity for C = S, A, ST:
∫

DζSDζADζST
δ

ζC(6, 5)

(
ζC(3, 4)e

−S
(2)
col [ζS,ζA,ζST]

)
= 0 . (4.17)

To derive the Schwinger-Dyson equation from this identity, it is useful to evaluate the

following functional derivatives11 with respect to the bi-locals:

δS(2)

δζC(6, 5)
= −(Ψ−1

cl ⋆ ζC ⋆Ψ
−1
cl )(5, 6)− ΞCJ [Ψcl(5, 6)]

q−2ζC(5, 6) (C = S, A, ST) (4.18)

and

δζS/ST(3, 4)

δζS/ST(6, 5)
= −θ63θ54δ(τ63)δ(τ54) + θ64θ53δ(τ64)δ(τ53) (4.19)

δζA(3, 4)

δζA(6, 5)
= θ63θ54δ(τ63)δ(τ54) + θ64θ53δ(τ64)δ(τ53) (4.20)

where θij ≡ θi − θj . Together with them, we multiply Ψcl(1, 5)dµ5 Ψcl(2, 6)dµ6 to (4.17)

and integrate it over µ5 and µ6, then we have the Schwinger-Dyson equation for the four

point function FC:

FC(1, 2; 3, 4) = F−σ(C),0(1, 2; 3, 4) +

∫
dµ5dµ6KC(1, 2; 5, 6)FC(5, 6; 3, 4) (4.21)

where σ(R) is the sign of the representation R (i.e., σ(S) = σ(ST) ≡ + and σ(A) ≡ −).

This equation expresses the four point function as a geometric series of which the common

ratio is given by

ζS : KS(1, 2; 3, 4) = (q − 1)JΨcl(1, 3)Ψcl(2, 4)Ψ
q−2
cl (3, 4) (4.22)

ζA : KA(1, 2; 3, 4) = JΨcl(1, 3)Ψcl(2, 4)Ψ
q−2
cl (3, 4) (4.23)

ζST : KST(1, 2; 3, 4) = −JΨcl(1, 3)Ψcl(2, 4)Ψ
q−2
cl (3, 4) (4.24)

and its first term is

ζS, ζA : F−,0 ≡ −Ψcl(1; 3)Ψcl(2; 4) + Ψcl(1; 4)Ψcl(2; 3) (4.25)

ζST : F+,0 ≡ Ψcl(1; 3)Ψcl(2; 4) + Ψcl(1; 4)Ψcl(2; 3) (4.26)
10Here, we included the factor 2 due to the definition of the fluctuation in (4.3).
11See appendix A for the convention of the bi-local functional derivatives.
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4.2 Conformal eigenfunctions

In this section, we will study two types of super-conformal eigenfunctions by using su-

persymmetric shadow representation following [56]. As shown in [56], one of the super-

conformal eigenfunction is turned out to be proportional to conformal eigenfunction found

in [6]. The other super-conformal eigenfunction is also proportional to the other non-SUSY

one in [59, 62, 65]. Hence, the properties of both super conformal eigenfunctions follows

from the non-SUSY ones [59, 65].

The basic idea of the supersymmetric shadow representation [56] is that a super-

conformal four point function can be constructed by deforming two decoupled CFTs by

ε

∫
dydθy Vh(y, θy)V ′

1
2
−h

(y, θy) (4.27)

where the operators Vh and V ′
1
2
−h

of conformal dimension h and 1
2 − h belong to differ-

ent CFTs. Note that Vh has opposite Grassman signature to V ′
h because the measure is

Grassmann odd. Then, one can write the (connected) four point function as

〈ψ(1)ψ(2)ψ(3)ψ(4)〉
〈ψ(1)ψ(2)〉〈ψ(3)ψ(4)〉 = ǫ

∫
dydθy

〈ψ(1)ψ(2)Vh(y)〉
〈ψ(1)ψ(2)〉

〈V ′
1/2−h(y)ψ(3)ψ(4)〉

〈ψ(3)ψ(4)〉 (4.28)

where we omit the O(N) indices and the flavor indices of the superfield. In this super-

shadow representation, one can obtain four types of superconformal eigenfunctions depend-

ing on the Grassmann signature of Vh and the symmetry under the exchange 1 ↔ 2 (See

appendix B for the details):

ΥB
∓,h ,Υ

F
∓,h . (4.29)

The eigenvalue of the super-conformal Casimir corresponding to Υ
B/F
∓,h is h(h − 1

2) [56].

The superscript B (or, F ) correpsonds to the case Vh is Grassmann even (or, odd) and

V ′
h is Grassmann odd (or, even, respectively) in (4.28). The subscript ∓ denotes the

symmetry under the exchange 1 ↔ 2 in the four point function (and, the correspond-

ing eigenfunction) without the denominator in (4.28). For example, Υ
B/F
− is symmetric

under exchange 1 ↔ 2 because of the anti-symmetry of the two point function in the

denominator.12 Furthermore, by construction of the shadow representation (4.28), the

exchange (τ1, θ1; τ2, θ2) ↔ (τ3, θ3; τ4, θ4) maps ΥB to ΥF and vice versa. i.e.,

ΥB
∓,h(1, 2, 3, 4) = ΥF

∓, 1
2
−h

(3, 4, 1, 2) . (4.30)

Hence, we will mainly work with ΥB
∓,h. In appendix B, ΥB

+,h is obtained in the same way

12The notation for the eigenfunction in this paper is opposite to that of [59, 65] where the label of the

eigenfunction denotes of its symmetry including the denominator. e.g., Υ− in this paper corresponds to Φs

in [59, 65].
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as ΥB
−,h in [56]:

ΥB
−,h(1, 2, 3, 4) =

1

2

∫
dydθy

|〈1, 2〉|h|〈3, 4〉|1/2−hsgn (τ34)P (3, 4, y)

|〈1, y〉|h|〈2, y〉|h|〈3, y〉|1/2−h|〈4, y〉|1/2−h
, (4.31)

ΥB
+,h(1, 2, 3, 4) = −1

2

∫
dydθy

|〈1, 2〉|h|〈3, 4〉|1/2−hsgn (τ12)P (3, 4, y)

|〈1, y〉|h|〈2, y〉|h|〈3, y〉|1/2−h|〈4, y〉|1/2−h

× sgn (τ1 − y)sgn (τ2 − y)sgn (τ3 − y)sgn (τ4 − y) (4.32)

where 〈i, j〉 ≡ τi − τj − θiθj (i, j = 1, 2, 3, 4) and P (1, 2, 3) is defined by

P (1, 2, 3) ≡ θ1τ23 + θ2τ31 + θ3τ12 − 2θ1θ2θ3

|〈1, 2〉〈2, 3〉〈3, 1〉| 12
. (4.33)

Using OSp(1|2) analogous to the global conformal group SL(2, R) in the non-SUSY case,

the super-conformal eigenfunctions can be expressed in terms of the super-conformal cross

ratio χ and ζ given by

χ ≡ 〈1, 2〉〈3, 4〉
〈1, 3〉〈2, 4〉 − ζ , (4.34)

ζ ≡ 〈1, 2〉〈3, 4〉+ 〈2, 3〉〈1, 4〉+ 〈3, 1〉〈2, 4〉
〈1, 3〉〈2, 4〉 . (4.35)

In particular, it is convenient to fix

τ1 = 0 , τ2 = χ , τ3 = 1 , τ4 = ∞ , θ3 = θ4 = 0 (4.36)

and, the super-conformal cross ratio becomes

χ = τ2 , ζ = θ1θ2 . (4.37)

Then, the super-conformal eigenfunctions can be expressed as

ΥB
∓,h(χ, ζ) =

(
1 +

hζ

χ

)
Φ∓,h(χ) . (4.38)

where the conformal eigenfunctions Φ∓,h are given by

Φ−,h(χ) ≡
1

2

∫ ∞

−∞
dy

|χ|h
|y|h|y − 1|1−h|y − χ|h (4.39)

Φ+,h(χ) ≡
sgn (χ)

2

∫ ∞

−∞
dy

|χ|hsgn (y)sgn (y − 1)sgn (y − χ)

|y|h|y − 1|1−h|y − χ|h . (4.40)

Note that the exchange 1 ↔ 2 corresponds to the following transformation of the super-

conformal cross ratio

(χ, ζ) −→
(

χ

χ− 1
,

ζ

χ− 1

)
. (4.41)

Under this transformation, one can easily confirm the symmetry of ΥB
∓,h(χ, ζ) from the

analogous symmetry of Φ∓,h. i.e.,

Φ∓,h

(
χ

χ− 1

)
= ±Φ∓,h(χ) =⇒ ΥB

∓,h

(
χ

χ− 1
,

ζ

χ− 1

)
= ±ΥB

∓,h(χ, ζ) . (4.42)
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and, similar for ΥF
∓. In addition, note that the super-conformal cross ratios in (4.34)

and (4.35) are invariant under the exchange (1, 2) ↔ (3, 4). Hence, in terms of the super-

conformal cross ratio, the relation between ΥB and ΥF in (4.30) becomes

ΥF
∓,h(χ, ζ) = ΥB

∓, 1
2
−h

(χ, ζ) (4.43)

Now, we will present the inner products of the super-conformal eigenfunctions. The

inner product in the non-SUSY SYK model was defined by [6]

(f1, f2) ≡
∫ 2

0

dχ

χ2
f1(χ)f2(χ) (4.44)

And, [56] generalized it into the supersymmetric inner product:

〈F,G〉 ≡ −
∫ 2

0

dχdζ

χ+ ζ
F (χ, ζ)G(χ, ζ) (4.45)

where dζ ≡ dθ2dθ1 for the choice in (4.37) so that
∫
dζ ζ = 1.

As shown in [56] for the case of ΥB
−,h, (4.38) enable us to reduce the inner product of the

super-conformal eigenfunctions into that of the corresponding conformal eigenfunctions:

〈ΥB
∓,h,Υ

B
∓,h′〉 = (1− h− h′)(Φ∓,h,Φ∓,h′) (4.46)

The complete set of the conformal eigenfunctions consists of continuous and discrete

states. Note that the conformal eigenfunction Φ∓,h has symmetry analogous to (4.43):

Φ∓,h(χ) = Φ∓,1−h(χ) , (4.47)

This symmetry of the conformal eigenfunction can restrict h for the complete set. There-

fore, the continuous states are given by

Φ∓,h(χ) : h =
1

2
+ is (s ≧ 0) , (4.48)

and their inner product is found to be [59, 65]

(Φ∓,h,Φ∓,h′) =
π tanπh

4h− 2
2π[δ(s− s′) + δ(s+ s′)] (4.49)

where h = 1
2 + is and h′ = 1

2 + is′. On the other hand, the discrete states are

Φ−,h(χ) : h = 2n (n = 1, 2, · · · ) , (4.50)

Φ+,h(χ) : h = 2n− 1 (n = 1, 2, · · · ) , (4.51)

and, the inner product is given by

(Φ∓,h,Φ∓,h) =
δn,n′π2

4h− 2
(4.52)
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This leads to the complete set of the super-conformal eigenfunctions via (4.38). However,

since (4.43) is not the symmetry of ΥB
∓,h but gives the relation to ΥF

∓, 1
2
−h

, there is no

restriction in h for the super-conformal eigenfunctions. Hence, we have

〈ΥB
∓,h,Υ

B
∓,h′〉 = −2πδ(s− s′)

π tanπh

2
(4.53)

where h = 1
2 + is and h′ = 1

2 + is′ (s, s′ ∈ R) for continuous states, and

〈ΥB
−,2n,Υ

B
−,2n′〉 = −δn,n′π2

2
, 〈ΥB

+,2n−1,Υ
B
+,2n′−1〉 = −δn,n′π2

2
(4.54)

〈ΥB
−,1−2n,Υ

B
−,1−2n′〉 = δn,n′π2

2
, 〈ΥB

+,2−2n,Υ
B
+,2−2n′〉 = δn,n′π2

2
(4.55)

where n, n′ ∈ Z for discrete states. Note that the inner product between ΥB
−,h and ΥB

+,h′

vanishes because it is reduced to the inner product of Φ−,h and Φ+,h, which is zero due to

the symmetry in (4.42). All other inner products between also vanishes because they have

different eigenvalues of super-conformal Casimir.

The eigenfunctions ΥB
−, 1

2
+is

(s ∈ R), ΥB
−,2n and ΥB

−,1−2n (n = 1, 2, · · · ) form a complete

set of states which is anti-symmetric under the exchange 1 ↔ 2 [56]. Likewise, another

complete set of states which are symmetric under the exchange 1 ↔ 2 is composed of

ΥB
+, 1

2
+is

(s ∈ R), ΥB
+,2n−1 and ΥB

+,2−2n (n = 1, 2, · · · ). From the inner products of the super-

conformal eigenfunctions in (4.53)∼(4.55), the corresponding completeness relations reads

−
∞∑

n=1

[
ΥB

−,2n(χ, ζ)Υ
B
−,2n(χ

′, ζ ′)−ΥB
−,1−2n(χ, ζ)Υ

B
−,1−2n(χ

′, ζ ′)
]

(4.56)

−
∫ ∞

−∞

ds

π2 tanπh
ΥB

−,h(χ, ζ)Υ
B
−,h(χ

′, ζ ′)

∣∣∣∣
h= 1

2
+is

= −(χ+ ζ)(χ′ + ζ ′)δ(χ− χ′) ,

−
∞∑

n=1

[
ΥB

+,2n−1(χ, ζ)Υ
B
+,2n−1(χ

′, ζ ′)−ΥB
+,2−2n(χ, ζ)Υ

B
+,2−2n(χ

′, ζ ′)
]

(4.57)

−
∫ ∞

−∞

ds

π2 tanπh
ΥB

+,h(χ, ζ)Υ
B
+,h(χ

′, ζ ′)

∣∣∣∣
h= 1

2
+is

= −(χ+ ζ)(ζ + ζ ′)δ(χ− χ′) .

4.3 Diagonalization

Now, one can expand the four point functions FC (C = S, A, ST) in terms of the complete

set of states which has the same symmetry under the exchange 1 ↔ 2:

FS/ST = −
∫ ∞

−∞

ds

π2 tanπh
ΥB

−,h(χ, ζ)〈ΥB
−,h,FS/ST〉

∣∣∣∣
h= 1

2
+is

(4.58)

−
∞∑

n=1

2

π2

[
ΥB

−,2n(χ, ζ)〈ΥB
−,2n,FS/ST〉 −ΥB

−,1−2n(χ, ζ)〈ΥB
−,1−2n,FS/ST〉

]
,

FA = −
∫ ∞

−∞

ds

π2 tanπh
ΥB

+,h(χ, ζ)〈ΥB
+,h,FA〉

∣∣∣∣
h= 1

2
+is

(4.59)

−
∞∑

n=1

2

π2

[
ΥB

+,2n−1(χ, ζ)〈ΥB
+,2n−1,FA〉 −ΥB

+,2−2n(χ, ζ)〈ΥB
+,2−2n,FA〉

]
.
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Since the bi-local super-conformal Casimir [56, 66] commutes with the kernel, the super-

conformal eigenfunction also diagonalize the kernel. Noting that (4.21) can be written as

FC =
1

1−KC

F−σ(C),0 , (4.60)

we need to evaluate the eigenvalue of the kernel KC corresponding to the super-confomal

eigenfunctions as well as the overlap between the eigenfunction and the first term FC,0 of

the geometric series in order to compute the inner product of FC and the super-conformal

eigenfunction. i.e.,

〈FC,Υ
B/F
∓ 〉 = 1

1− k
B/F
C

〈F−σ(C),0,Υ
B/F
∓ 〉 (4.61)

By construction of the super-conformal eigenfunction with the super-shadow representa-

tion, the kernel will be diagonalized by the three point function 〈ψ(3)ψ(4)VB/F
h (y, θy)〉

in the super-shadow representation (4.28) for each channel. For simplicity, one can take

y → ∞ limit where the three point function behaves as

〈ψ(3)ψ(4)VB/F
h (y, θy)〉 ∼ y−2hSB/F (3, 4) (4.62)

Then, the simpler function SB/F (3, 4) will also diagonalize the kernel with the same

eigenvalue. The flavor structure of ψ(3)ψ(4) in the three point function will determine the

symmetry13 of SB/F (3, 4) under the exchange 3 ↔ 4, and therefore, we have four types of

eigenfunction for the kernel:

SB
−,h(t3, θ3, t4, θ4) ≡

sgn (τ34)

|〈3, 4〉|2∆−h
, (4.63)

SF
−,h(t3, θ3, t4, θ4) ≡

(θ3 − θ4)

|τ34|2∆−h+ 1
2

, (4.64)

SB
+,h(t3, θ3, t4, θ4) ≡

1

|〈3, 4〉|2∆−h
, (4.65)

SF
+,h(t3, θ3, t4, θ4) ≡

sgn (τ34)(θ3 − θ4)

|τ34|2∆−h+ 1
2

. (4.66)

Using the function S
B/F
∓,h , one can easily evaluate the eigenvalues of the kernel for each

channel. For example, the eigenvalues of the kernel for the singlet channel can be evaluated

by S
B/F
−,h because of the symmetry under the 1 ↔ 2 exchange:

∫
dτ3dθ3dτ4dθ4 KS(1, 2, 3, 4)S

B
−,h(3, 4) = kB

S
(h)SB

−,h(1, 2) , (4.67)
∫

dτ3dθ3dτ4dθ4 KS(1, 2, 3, 4)S
F
−,h(3, 4) = kF

S
(h)SF

−,h(1, 2) . (4.68)

where the kernel in the singlet channel is given by

KS(1, 2, 3, 4) = (q − 1)JΨcl(1, 3)Ψcl(2, 4)[Ψcl(3, 4)]
q−2 (4.69)

13Here, in contrast to the super-conformal eigenfunctions ΥB
∓,h, we did not include the two point function

in the denominator. Therefore, S
B/F
−,h is anti-symmetric under the exhange 3 ↔ 4 and vice versa.
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The eigenvalue equation can be further simplified by choosing the particular points

τ1 = 1 , τ2 = 0 , θ1 = θ2 = 0 . (4.70)

Then, the r.h.s. of (4.67) is simply reduced to the eigenvalue kB
S
(h), and the l.h.s. become

a simple integral:

kB−(h) = (q − 1)
tan π

2q

2π

∫
dτ3dθ3dτ4dθ4

sgn (1− τ3)sgn (−τ4)

|1− τ3|2∆|τ4|2∆|〈3, 4〉|1−2∆−h

= −(q − 1)
sin 2π∆− sinπh

sin 2π∆

Γ(−h+ 2∆)Γ(h+ 2∆)

[Γ(2∆)]2
. (4.71)

The other eigenvalue kF
S
(h) immediately follows14 from the relation between the

eigenfunctions ΥB
−,h and ΥF

−, 1
2
−h

in (4.43):

kF
S
(h) = kB

S

(
1

2
− h

)
(4.72)

In the same way, one can evaluate the eigenvalue k
B/F
A

(h) of the kernel in the anti-

symmetric channel given by

KA(1, 2, 3, 4) = JΨcl(1, 3)Ψcl(2, 4)[Ψcl(3, 4)]
q−2 (4.73)

and, we have

kB
A
(h) =

sin 2π∆+ sinπh

sin 2π∆

Γ(−h+ 2∆)Γ(h+ 2∆)

[Γ(2∆)]2
(4.74)

kF
A
(h) = kB

A

(
1

2
− h

)
(4.75)

Note that it is enough to evaluate for the singlet and anti-symmetric channel because the

eigenfunctions of the singlet and the symmetric-traceless channel are identical, and the

two kernels are proportional each other:

KST(1, 2, 3, 4) = − 1

q − 1
KS(1, 2, 3, 4) (4.76)

Now, we compute the overlap 〈ΥB
C,h,F−σ(C),0〉. For this purpose, we will employ the

trick of [56]. We start with a OSp(1|2) invariant integral of the form

1

2

∫ ∞

−∞

dτ1dθ1dτ2dθ2
τ12 − θ1θ2

dτ3dθ3dτ4dθ4
τ34 − θ3θ4

dydθy
|〈1, 2〉|hsgn (τ12)P (1, 2, y)|〈3, 4〉| 12−h

|〈1, y〉|h|〈2, y〉|h|〈3, y〉| 12−h|〈4, y〉| 12−h
F ′
−,0 (4.77)

where F ′
−,0 is defined by

F ′
−,0 ≡ −Ψcl(1, 3)Ψcl(2, 4)

Ψcl(1, 2)Ψcl(3, 4)
(4.78)

We can evaluate this integral by using OSp(1|2) to set any three of τ1, · · · , τ4, y to a, b, c and

the fermionic partners of a, b to 0 provided we insert in the integral−sgn (a−b)|(a−c)(b−c)|.
We will now perform this integral by the following two choices:

14One can repeat the same calculation for (4.68) and confirm this result.
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• First, we choose

τ1 = 0(= c) , τ3 = 1 , θ3 = 0 , τ4 = ∞ , θ4 = 0 (4.79)

and we insert |(τ4 − 0)| in the integral. Recalling the form of the ΥF
−,h

(
= ΥB

−,1/2−h

)

in (4.31) and the symmetry

ΥF
−,h(χ, ζ) = ΥF

−,h

(
χ

χ− 1
,

ζ

χ− 1

)
(4.80)

which is analogous to (4.42), one has the integral in (4.77) to be

−
∫ ∞

−∞

dχdζ

χ+ ζ
ΥF

−,h(1, 2, 3, 4)F ′
−,0(1, 2, 3, 4) = 〈ΥF

−,h,F−,0〉 (4.81)

• On the other hand, one can also choose

τ1 = 1 , τ2 = 0 , y = ∞(= c) , θ1 = θ2 = 0 . (4.82)

In this choice, the integral (4.77) can be evaluated to be

1

2

∫ ∞

−∞

dτ3dθ3dτ4dθ4
τ34 − θ3θ4

|〈3, 4〉| 12−hΨcl(1, 3)Ψcl(2, 4)

Ψcl(1, 2)Ψcl(3, 4)

=
1

2ΛqJ(q − 1)

∫ ∞

−∞
dτ3dθ3dτ4dθ4 KS((1, 0), (0, 0); 3, 4)S

B
−, 1

2
−h

(3, 4)

=
1

2(q − 1)JΛq
kF
S
(h) (4.83)

where we used (4.63) and (4.72).

Comparing the two ways of evaluating the same integral (4.77), we have [56]

〈ΥF
−,h,F−,0〉 =

α0

2
kF
S
(h) (4.84)

where the constant α0 is given by

α0 =
2π

(q − 1) tan π
2q

. (4.85)

Recalling the relation between ΥB and ΥF in (4.43) as well as the relation kB
S
(h) and kF

S
(h)

in (4.72), we obtain

〈ΥB
−,h,F−,0〉 = 〈ΥF

−, 1
2
−h

,F−,0〉 =
α0

2
kB
S
(h) . (4.86)

For the anti-symmetric channel, one can repeat the same trick with the following OSp(1|2)-
invariant integral

− 1

2

∫ ∞

−∞

dτ1dθ1dτ2dθ2
τ12 − θ1θ2

dτ3dθ3dτ4dθ4
τ34 − θ3θ4

dydθy
|〈1, 2〉|hsgn (τ34)P (1, 2, y)|〈3, 4〉| 12−h

|〈1, y〉|h|〈2, y〉|h|〈3, y〉| 12−h|〈4, y〉| 12−h
F ′
+,0

× sgn (τ1 − y)sgn (τ2 − y)sgn (τ3 − y)sgn (τ4 − y) . (4.87)
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where we define

F ′
+,0 =

Ψcl(1, 3)Ψcl(2, 4)

Ψcl(1, 2)Ψcl(3, 4)
. (4.88)

From the same two choices of “gauge”, we have

〈ΥB
+,h,F+,0〉 = (q − 1)

α0

2
kB
A
(h) (4.89)

Note that we do not need to repeat the calculation for the case of the symmetric channel

because it is the same as that of the singlet channel. Now, using the eigenvalues of the

kernels and the overlaps, one can express the four point functions in (4.58) and (4.59) in

terms of the super-conformal eigenfunctions.

Summary. Here, we summarize the result for the four point functions and the eigenvalues

of the kernels.

• Four point function:

FS

α0
= −

∞∑

n=1

1

π2

[
ΥB

−,2n(χ, ζ)
kB
S
(2n)

1− kB
S
(2n)

−ΥB
−,1−2n(χ, ζ)

kB
S
(1− 2n)

1− kB
S
(1− 2n)

]

−
∫ ∞

−∞

ds

2π2 tanπh
ΥB

−,h(χ, ζ)
kB
S
(h)

1− kB
S
(h)

∣∣∣∣
h= 1

2
+is

(4.90)

FA

(q − 1)α0
= −

∞∑

n=1

1

π2

[
ΥB

+,2n−1(χ, ζ)
kB
A
(2n− 1)

1− kB
A
(2n− 1)

−ΥB
+,2−2n(χ, ζ)

kB
A
(2− 2n)

1− kB
A
(2− 2n)

]

−
∫ ∞

−∞

ds

2π2 tanπh
ΥB

+,h(χ, ζ)
kB
A
(h)

1− kB
A
(h)

∣∣∣∣
h= 1

2
+is

(4.91)

FST

(q − 1)α0
= −

∞∑

n=1

1

π2

[
ΥB

−,2n(χ, ζ)
kB
ST
(2n)

1− kB
ST
(2n)

−ΥB
−,1−2n(χ, ζ)

kB
ST
(1− 2n)

1− kB
ST
(1− 2n)

]

−
∫ ∞

−∞

ds

2π2 tanπh
ΥB

−,h(χ, ζ)
kB
ST
(h)

1− kB
ST
(h)

∣∣∣∣
h= 1

2
+is

(4.92)

• Eigenvalue for C = S, A, ST

kB
S
(h) = −(q − 1)

sin 2π∆− sin(πh)

sin 2π∆

Γ(−h+ 2∆)Γ (h+ 2∆)

[Γ (2∆)]2
(4.93)

kB
A
(h) =

sin 2π∆+ sinπh

sin 2π∆

Γ(−h+ 2∆)Γ(h+ 2∆)

[Γ(2∆)]2
= − 1

q − 1
kB
S
(−h) (4.94)

kB
ST
(h) = − 1

q − 1
kB
S
(h) (4.95)

5 Spectrum

In this section, we will take OPE limit to read off the spectrum. Using the expression of the

conformal eigenfunction Φ∓,h(χ) for 0 < χ < 1 [59, 65], the super-conformal eigenfunctions
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for 0 < χ < 1 can be written as

ΥB
−,h(χ, ζ) =

(
1 +

hζ

χ

)
Φ−,h(χ) ≡

(
1 +

hζ

χ

)
[A(h)Fh(χ) +B(h)F1−h(χ)] (5.1)

ΥB
+,h(χ, ζ) =

(
1 +

hζ

χ

)
Φ+,h(χ) ≡

(
1 +

hζ

χ

)
[B(h)Fh(χ) +A(h)F1−h(χ)] (5.2)

where the function Fh(χ) is defined
15 by

Fh(χ) =
[Γ(h)]2

Γ(2h)
χh

2F1(h, h; 2h;χ) (5.3)

and the coefficient A(h) and B(h) are

A(h) ≡ 1

2
tan(πh) cot

πh

2
, B(h) ≡ −1

2
tan(πh) tan

πh

2
(5.4)

Following [56], we will manipulate (4.90)∼(4.92) in order to find the spectrum and OPE

coefficient in each channel. In this calculation, it is useful to note that

A(h) = B(1− h) (5.5)

and

A(2n) = B(1− 2n) = 1 , A(2n− 1) = B(2− 2n) = 0 (n ∈ Z) (5.6)

Singlet channel. Using (5.5) and (5.6), the singlet channel four point function (4.90)

becomes

FS

α0
= −

∞∑

n=1

A(2n)

π2
F2n(χ)

[(
1+

2nζ

χ

)
kB
S
(2n)

1−kB
S
(2n)

−
(
1+

(1−2n)ζ

χ

)
kB
S
(1−2n)

1−kB
S
(1−2n)

]

−
∫ ∞

−∞

ds

2π2 tanπh

(
1+

hζ

χ

)
[A(h)Fh(χ)+A(1−h)F1−h(χ)]

kB
S
(h)

1−kB
S
(h)

∣∣∣∣
h= 1

2
+is

(5.7)

By changing h into 1− h in the second term of the contour integral, one has

FS

α0
= −

∞∑

n=1

A(2n)

π2
F2n(χ)

[(
1+

2nζ

χ

)
kB−(2n)

1−kB
S
(2n)

−
(
1+

(1−2n)ζ

χ

)
kB
S
(1−2n)

1−kB
S
(1−2n)

]

−
∫ ∞

−∞
ds

A(h)Fh(χ)

2π2 tanπh

[(
1+

hζ

χ

)
kB
S
(h)

1−kB
S
(h)

−
(
1+

(1−h)ζ

χ

)
kB
S
(1−h)

1−kB
S
(1−h)

]∣∣∣∣
h= 1

2
+is

(5.8)

Note that the second term in the discrete summation diverges at h = 2 (i.e., kB
S
(−1) = 1).

This divergent contribution comes from the zero mode corresponding to the broken super-

conformal symmetry. In this section, we drop the zero mode contribution in evaluating the

spectrum and OPE coefficients. Expressing the discrete sum as a residue sum, we have

FS

α0

∣∣∣∣
non-zero

= −
∞∑

n=1

Res
h=2n

Fh(χ)

2π tan πh
2

(
1+

hζ

χ

)
kB
S
(h)

1−kB
S
(h)

15Note that the function Fh(χ) in this paper differs from that of [56] by the factor [Γ(h)]2

Γ(2h)
.
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+

∞∑

n=2

Res
h=2n

Fh(χ)

2π tan πh
2

(
1+

(1−h)ζ

χ

)
kB
S
(1−h)

1−kB
S
(1−h)

(5.9)

− 1

2πi

∫

C
dh

Fh(χ)

2π tan πh
2

[(
1+

hζ

χ

)
kB
S
(h)

1−kB
S
(h)

−
(
1+

(1−h)ζ

χ

)
kB
S
(1−h)

1−kB
S
(1−h)

]
.

By pulling the contour to infinity, the residue sum is cancelled. At the same time, this

picks up poles at

kB
S
(h) = 1 , kB

S
(1− h) = kF

S

(
h− 1

2

)
= 1

(
h >

1

2

)
(5.10)

and, we have

FS

α0

∣∣∣∣
non-zero

= Res
kB
S
(h)=1 , h>1/2

Fh(χ)

2π tan πh
2

(
1 +

hζ

χ

)
kB
S
(h)

1− kB
S
(h)

− Res
kF
S
(h− 1

2
)=1 , h>1/2

Fh(χ)

2π tan πh
2

(
1 +

(1− h)ζ

χ

)
kF
S
(h− 1/2)

1− kF
S
(h− 1/2)

(5.11)

As pointed out in [56], h = 1 does not contribute to the residue sum because 1
tan πh

2

cancels

the simple pole of 1
1−kB

S
(h)

at h = 1. Also, the residue sum includes the double pole at

h = 2, which has to be carefully analyzed together with the zero mode contributions. To

read off OPE coefficients, it is convenient to express (5.11) as

FS

α0

∣∣∣∣
non-zero

=
∑

kB
S
(h)=1 , h>1/2

(cB
S,h)

2

(
1 +

hζ

χ

)
χh

2F1(h, h, 2h;χ)

+
∑

kF
S
(h− 1

2
)=1 , h>1/2

(cF
S,h)

2

(
1 +

(1− h)ζ

χ

)
χh

2F1(h, h, 2h;χ) (5.12)

where the OPE coefficients are given by

(cB
S,h)

2 ≡ 1

−2π tan πh
2

[Γ(h)]2

Γ(2h)

1

[kB
S
(h)]′

> 0 for kB
S
(h) = 1 (5.13)

(cF
S,h)

2 ≡ 1

−2π tan πh
2

[Γ(h)]2

Γ(2h)

1

−[kF
S
(h− 1/2)]′

> 0 for kF
S

(
h− 1

2

)
= 1 (5.14)

Note that (1+ hζ
χ )χh

2F1(h, h, 2h, χ) in the first term of (5.12) is the super-conformal block

of (bosonic) primary of dimension h. On the other hand, (1 + (1−h)ζ
χ )χh

2F1(h, h, 2h;χ)

in the second term of (5.12) is an eigenfunction of the super-Casimir with eigenvalue

(h− 1
2)(h− 1), which implies that it is related to the descendants of the fermionic primary

of dimension h− 1
2 [56].

Note that kB
S
(h) (and, kF

S
(h − 1)) is increasing function (and, decreasing function)

around the zeros of kB
S
(h) = 1 (and, kF

S
(h− 1) = 1, respectively). In addition, since tan πh

2

is negative at these points, the square of the OPE coefficients are positive.
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Anti-symmetric channel. In the same way, the four point function (4.91) in the anti-

symmetric channel can be written as

FA

(q − 1)α0

∣∣∣∣
non-zero

= +
∞∑

n=1

Res
h=2n−1

Fh(χ)

2π cot πh
2

(
1 +

hζ

χ

)
kB
A
(h)

1− kB
A
(h)

−
∞∑

n=2

Res
h=2n−1

Fh(χ)

2π cot πh
2

(
1 +

(1− h)ζ

χ

)
kB
A
(1− h)

1− kB
A
(1− h)

(5.15)

+
1

2πi

∫

C
dh

Fh(χ)

2π cot πh
2

[(
1 +

hζ

χ

)
kB
A
(h)

1− kB
A
(h)

−
(
1 +

(1− h)ζ

χ

)
kB
A
(1− h)

1− kB
A
(1− h)

]∣∣∣∣∣
h= 1

2
+is

Note that we dropped h = 1 term in the second discrete sum because it corresponds to the

zero mode contribution and has to be carefully analyzed separately (kB
A
(0) = 1). As in the

singlet channel, we pull the contour to positive infinity, which cancels the discrete residue

sum and leads to other residue sum including the double pole at h = 1.

FA

(q − 1)α0
= − Res

kB
A
(h)=1 , h>1/2

Fh(χ)

2π cot πh
2

(
1 +

hζ

χ

)
kB
A
(h)

1− kB
A
(h)

+ Res
kF
A
(h− 1

2
)=1 , h>1/2

Fh(χ)

2π cot πh
2

(
1 +

(1− h)ζ

χ

)
kF
A
(h− 1/2)

1− kF
A
(h− 1/2)

(5.16)

Expressing this in terms of the super-conformal blocks, one can read off the OPE coefficient:

FA

(q − 1)α0
=

∑

kB
A
(h)=1 , h>1/2

(
cB
A,h

)2 1

2π cot πh
2

(
1 +

hζ

χ

)
χh

2F1(h, h, 2h;χ)

+
∑

kF
A
(h− 1

2
)=1 , h>1/2

(
cF
A,h

)2
(
1 +

(1− h)ζ

χ

)
χh

2F1(h, h, 2h;χ) (5.17)

where the square of OPE coefficients are given by

(cB
A,h)

2 ≡ 1

2π cot πh
2

[Γ(h)]2

Γ(2h)

1

[kB
A
(h)]′

> 0 for kB
A
(h) = 1 (5.18)

(cF
A,m)2 ≡ 1

2π cot πh
2

[Γ(h)]2

Γ(2h)

1

−[kF
A
(h− 1/2)]′

> 0 for kF
A
(h) = 1 (5.19)

Note that the square of the OPE coefficients (c
B/F
A,h )2 is positive because kB

A
(h) (and, kF

A
(h−

1
2)) is an increasing function (and, a decreasing function) around the zeros of kB

A
(h) = 1

(and, kF
A
(h− 1) = 1, respectively) and because cot πh

2 is positive at the zeros.

Symmetric-traceless channel. Since the symmetric-traceless channel has the same

conformal eigenfunctions as the singlet channel, the evaluation of the spectrum and OPE

coefficients in the symmetric-traceless channel is parallel to that of the singlet channel.

Recall that the eigenvalue of the kernel in the symmetric-traceless channel is

k
B/F
ST

(h) = − 1

q − 1
k
B/F
S

(h) . (5.20)
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Thus, the singlet-traceless channel does not have divergence in the four point function.

This is consistent with the fact that the zero modes in the low energy effective action are

not coupled to the symmetric-traceless channel (See section 6.2). In the same ways as in

the symmetric-traceless channel, one can immediately obtain

FST

(q − 1)α0
=

∑

kB
ST
(h)=1 , h>1/2

(
cB
ST,h

)2
(
1 +

hζ

χ

)
χh

2F1(h, h, 2h;χ)

+
∑

kF
ST
(h− 1

2
)=1 , h>1/2

(
cF
ST,h

)2
(
1 +

(1− h)ζ

χ

)
χh

2F1(h, h, 2h;χ) (5.21)

where (the square of) the OPE coefficients are given by

(cB
ST,h)

2 =
1

−2π tan πh
2

[Γ(h)]2

Γ(2h)

1

−[kB
ST
(h)]′

> 0 for kB
ST
(h) = 1 (5.22)

(cF
ST,h)

2 =
1

−2π tan πh
2

[Γ(h)]2

Γ(2h)

1

[kF
ST
(h− 1/2)]′

> 0 for kF
ST
(h) = 1 (5.23)

One can confirm that they are positive.

6 Out-of-time-ordered correlators and chaos

6.1 Quadratic low energy effective action

For the contribution of the zero mode to four point function, we will first obtain the

quadratic low energy effective action and derive the two point functions of the zero modes.

Let us consider the infinitesimal super-reparametrization (3.23) with f(ϕ) and η(ϕ) around

the finite temperature solution given by

f(ϕ) = tan

[
(ϕ+ ǫ(ϕ))

2

]
, η(ϕ) . (6.1)

where we use the dimensionless variable ϕ ≡ 2π
β τ for convenience. Together with the

infinitesimal ŜO(q) transformations given by

g = I + iρ(ϕ) + θk(ϕ) , (6.2)

we expand the zero modes as follows:

ǫ(ϕ) =
1

2π

∑

n∈Z

ǫne
−inϕ , (6.3)

η(ϕ) =
1

2π

∑

n∈Z+ 1
2

ηne
−inϕ , (6.4)

ρ(ϕ) =
1

2π

∑

n∈Z

ρne
−inϕ =

1

2π
√
2xA

∑

n∈Z

ρanT
a
A
e−inϕ , (6.5)

k(ϕ) =
1

2π

∑

n∈Z+ 1
2

kne
−inϕ =

1

2π
√
2xA

∑

n∈Z+ 1
2

kanT
a
A
e−inϕ , (6.6)
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where T a
A
is the so(q) generator in the anti-symmetric representation. With these zero

modes, the quadratic effective action can be derived from (3.54) and (3.56):

S
(2)
eff,SDiff =

NαSDiff

βJ

∞∑

n=2

n2(n2 − 1)ǫnǫ−n − 4iNαSDiff

βJ

∞∑

n= 3
2

n

(
n2 − 1

4

)
ηnη−n (6.7)

S
(2)
eff,SO(q) =

NαSDiff

βJ

∞∑

n=1

n2ρanρ
a
−n +

iNαSDiff

βJ

∞∑

n= 1
2

nkank
a
−n (6.8)

From the quadratic effective actions, one can read off the two point functions of the zero

modes:

〈ǫnǫ−n〉 =
βJ

NαSDiff

1

n2(n2 − 1)
(6.9)

〈ηnη−n〉 = − iβJ

4NαSDiff

1

n(n2 − 1
4)

(6.10)

〈ρanρb−n〉 = δab
βJ

NαSO(q)

1

n2
(6.11)

〈kankb−n〉 = δab
iβJ

NαSO(q)

1

n
(6.12)

6.2 Leading contribution: zero modes

In this section, we will evaluate the zero mode contribution to the out-of-time-ordered

correlators. For this, we consider the super-reparametrization and the SO(q) local trans-

formation of the classical solution at finite temperature. Using the super-conformal trans-

formation

f(ϕ, θ) = f(ϕ+ θη(ϕ)) , (6.13)

y(ϕ, θ) =
√

∂ϕf(ϕ) η(ϕ) + θ
√
∂ϕf(ϕ)

(
1 +

1

2
η(ϕ)∂ϕη(ϕ)

)
, (6.14)

one can obtain the classical solution at finite temperature from the zero temperature one.

For this, it is convenient to use the dimensionless variable ϕ (equivalently, we choose

β = 2π):

τ = tan
ϕ

2
(6.15)

θ′ =
1√
2
sec

ϕ

2
θ , (6.16)

where (τ, θ′) is the coordinate on the super-line at zero temperature. The corresponding

super-Jacobian factor is given by

Dθθ
′ =

√
∂τf(τ) =

1√
2
sec

ϕ

2
. (6.17)

Hence, the classical solution at finite temperature is found to be

Ψcl(ϕ1, θ1;ϕ2, θ2) =
Λ

2

sgn (ϕ12)∣∣sin ϕ12

2 − 1
2θ1θ2

∣∣2∆ I . (6.18)
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Bosonic reparametrization zero mode. First, we evaluate the contribution of the

bosonic zero mode of the broken super-reparametrization to the four point function

〈Ψ(1, 2)Ψ(3, 4)〉 = Ψcl(1, 2)Ψcl(3, 4) +O(
1

N
) . (6.19)

For this, we consider infinitesimal super-reparametrization on the circle by ǫ(ϕ):

ϕ −→ ϕ+ ǫ(ϕ) , (6.20)

θ −→
√
1 + ǫ′θ =

(
1 +

1

2
ǫ′
)
θ , (6.21)

and, the super-Jacobian factor is

Dθθ
′ =

√
f ′ = 1 +

1

2
ǫ′ . (6.22)

The variation of the classical solution (6.18) with respect to ǫn is found to be

δǫnΨcl =
2∆

2π
iΨcle

−in
ϕ1+ϕ2

2

(
1 +

1
2θ1θ2

sin ϕ12

2

)[
sin nϕ12

2

tan ϕ12

2

− n cos
nϕ12

2

]
(6.23)

where we define

ǫ(ϕ) ≡ 1

2π

∑

n

ǫne
−inϕ . (6.24)

It is important to note that the variation δǫnΨcl is proportional to the q×q identity matrix

(i.e., Ψcl ∼ I). Therefore, the ǫ zero modes give a contribution only to the singlet channel

FS up to leading order, which is given by

F ǫ
S
(1, 2, 3, 4) ≡ N

q

∑

n

〈ǫnǫ−n〉 tr (δǫnΨcl(1, 2)) tr
(
δǫ−nΨcl(3, 4)

)
(6.25)

where we chose the normalization N
q so that F ǫ

S
corresponds to the zero mode contribution

to FS in (4.13). Using the two point function of ǫn in (6.9), we first evaluate F ǫ
S
in the

particular ordering of ϕ’s on the circle as follow.

ϕ2 < ϕ3 = 0 < ϕ1 < ϕ4 = π . (6.26)

Taking analytic continuation of ϕ1 and ϕ2

ϕ1 =
π

2
− 2πi

β
t , ϕ2 = −π

2
− 2πi

β
t , (6.27)

one can evaluate the out-of-time-ordered correlator from (6.25) [6, 62]. At large t, we have

F ǫ
S
(1, 2, 3, 4)

Ψcl(1, 2)Ψcl(3, 4)
≃ βJ

16πqαSDiff

(
1 +

1

2
θ1θ2

)(
1 +

1

2
θ3θ4

)
e

2π
β
t
. (6.28)

where Ψcl is given by

Ψcl(ϕ1, θ1;ϕ2, θ2) ≡
1

q
tr [Ψ(ϕ1, θ1;ϕ2, θ2)] =

Λ

2

sgn (ϕ12)∣∣sin ϕ12

2 − 1
2θ1θ2

∣∣2∆ . (6.29)

Note that the ǫ zero mode contribution is composed of the terms such as 1, θ1θ2, θ3θ4 or

θ1θ2θ3θ4, which corresponds to the contribution to 〈χiχiχjχj〉, 〈bibiχjχj〉, 〈χiχibjbj〉 or

〈bibibjbj〉 in the singlet channel, respectively. They saturate the chaos bound, which is

consistent with [65]. Moreover, they are all related to the bosonic bi-local fields, and it is

natural to get the ǫ zero mode contribution because of fermi statistics. (See figure 1.)

– 32 –



J
H
E
P
0
8
(
2
0
1
8
)
1
5
9

Fermionic reparametrization zero mode. We analyze the contribution of the

fermionic zero mode for the broken super-reparametrization. For this we consider the

following infinitesimal super-reparametrization:

f(ϕ, θ) = ϕ+ θη(ϕ) , (6.30)

y(ϕ, θ) = η(ϕ) + θ

(
1 +

1

2
η(ϕ)∂ϕη(ϕ)

)
≃ η + θ (6.31)

where the corresponding super-Jacobian factor is

Dy =

(
1 +

1

2
ηη′

)
+ θη′ ≃ 1 + θη′ . (6.32)

Under this infinitesimal transformation, the variation of the classical solution at finite

temperature with respect to ηn is found to be

δΨcl = Ψcli
2∆

2π
e−in

ϕ1+ϕ2
2

[
θ1 + θ2

2

(
cot

ϕ12

4
sin

nϕ12

2
− 2n cos

nϕ12

2

)

−θ1 − θ2
2

i
(
tan

ϕ12

4
cos

nϕ12

2
− 2n sin

nϕ12

2

)]
δηn (6.33)

where we expand η(ϕ) as follows.

η(ϕ) =
1

2π

∑

n∈Z+ 1
2

ηne
−inϕ (6.34)

As in the ǫ zero mode, the variation of the classical solution is proportional to the q × q

identity matrix. Hence, the η zero mode also contributes only to the singlet channel up to

leading order, which reads

Fη
S
(1, 2, 3, 4) ≡ −N

q

∑

n

〈ηnη−n〉 tr (δηnΨcl(1, 2)) tr
(
δη−nΨcl(3, 4)

)
(6.35)

where the normalization N
q is chosen for its contribution to FS in (4.14). In the same way,

we evaluate Fη
S
with the particular ordering of ϕ’s on the Euclidean circle in (6.26), and

then we take analytic continuation ϕ1 and ϕ2 by (6.27). The large t behavior of Fη
S
is

found to be

Fη
S
(1, 2, 3, 4)

Ψcl(1, 2)Ψcl(3, 4)
≃ βJ

16πq2αSDiff

1 + i√
2
(θ1 − iθ2)(θ3 − iθ4)e

π
β
t

(6.36)

Note that this contribution consist of θ1θ3, θ2θ3, θ1θ4 or θ2θ4. They contribute to the four

point functions such as 〈biχibjχj〉 in the singlet channel which are made of the fermionic

bi-local fields. Also, the fermi statistics would allow such a contribution while the ǫ zero

mode contribution is not allowed at the leading order (See figure 1). Hence, the Lyapunov

exponent of those out-of-time-ordered correlators is π
β .
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Bosonic local SO(q) transformation zero mode. Now, we consider the zero mode

contribution from the broken local SO(q) transformation. In particular, the bosoinc zero

mode comes from the infinitesimal transformation ρ:

g(ϕ, θ) = h(ϕ) = I + iρ(ϕ) (6.37)

The variation of the finite temperature classical solution with respect to ρ is

δρanΨcl =
1

π
√
2x

Ψcle
−in

ϕ1+ϕ2
2 sin

(
n
ϕ1 − ϕ2

2

)
T a

A
(6.38)

where the expansion of the zero mode ρ(ϕ) is given by

ρ(ϕ) =
1

2π

∑

n

ρne
−inϕ =

1

2π
√
2xA

∑

n

ρanT
a
A
e−inϕ . (6.39)

It is crucial to note that the variation is proportional to the generators T a
A
of the anti-

symmetric representation. Therefore, as in the non-SUSY SYK model with global symme-

try [62], the zero mode ρ give a contribution only to the anti-symmetric channel. Thus,

the zero mode contribution can be evaluated16 by

δabFρ
A
(1, 2, 3, 4) ≡ N

2xA

∑

n

〈ρcnρd−n〉
〈
tr

[
δρcnΨ(1, 2)T a

A

]
tr

[
δρd

−n
Ψ(3, 4)T b

A

]〉
(6.40)

where we also the normalization N
2xA

for the consistency with FA in (4.15). As before, the

analytic continuation (6.27) of the ordering in (6.26) gives the large time behavior of Fρ
A
:

δabFρ
A
(1, 2, 3, 4)

Ψcl(1, 2)Ψcl(3, 4)
≃ −i

βJ

2παSO(q)

δab
2π

β
t . (6.41)

The leading contribution of the ρ zero mode is independent of Grassmannian variables. This

implies that only the four point function 〈χiχiχjχj〉 in the anti-symmetric channel gets the

ρ zero mode contribution even though the fermi statistics does not prevent the contribution

to other four point functions such as 〈χiχibjbj〉 or 〈bibibjbj〉. The corresponding Lyapunov

exponent is 0. But, the out-of-time-ordered correlator grows linearly in time, which was also

observed in the non-SUSY SYK model with global symmetry [62] as well as the SYK-like

tensor model [45].

Fermionic SO(q) local transformation zero mode. The fermionic SO(q) transfor-

mation can be parametrized by

g(ϕ, θ) = I + θk(τ) , (6.42)

and, we expand the fermionic zero mode k(ϕ) as follows.

k(ϕ) =
1

2π

∑

n∈Z+ 1
2

kne
−inϕ =

1

2π
√
2x

∑

n∈Z+ 1
2

kanT
a
A
e−inϕ . (6.43)

16Recall that Fab
A/ST = δabFA/ST.

– 34 –



J
H
E
P
0
8
(
2
0
1
8
)
1
5
9

ǫ : Singlet
ρ : Anti

χ

χ

χ

χ

ǫ : Singlet

χ

χ

b

b

ǫ : Singlet

b

b

b

b

η : Singlet
k : Anti

χ

b

χ

b

Figure 1. Schematic diagrams for the contributions of the zero modes. The single solid line

denotes the fermion χ while the single dashed line represents the auxiliary boson b. In addition,

the double wavy line represents the η zero mode for the singlet channel or the k zero mode for the

anti-symmetric channel. The double dashed line denotes the ǫ zero mode for the singlet channel or

the ρ zero mode for the anti-symmetric channel. However, the bi-locals bibi is not coupled to the

zero mode ρ.

One can eaily evaluate the variation of the classical solution at finite temperature with

repsect to kan:

δΨcl =
1

π
√
2x

Ψcle
−in

ϕ1+ϕ2
2

[
cos

(nϕ12

2

) θ1 − θ2
2

− i sin
(nϕ12

2

) θ1 + θ2
2

]
δkanT

a
A
. (6.44)

Again, the variation is proportional to T a
A
, the anti-symmetric channel gets the contribution

from the zero mode k up to leading order:

δabFk
A
(1, 2, 3, 4) ≡ − N

2xA

∑

n

〈kcnkd−n〉
〈
tr

[
δkcnΨ(1, 2)T a

A

]
tr

[
δkd

−n
Ψ(3, 4)T b

A

]〉
. (6.45)

In the same way, the large time behavior of Fk
A
is found to be

δabFk
A
(1, 2, 3, 4)

Ψcl(1, 2)Ψcl(3, 4)
≃ βJ

4παSO(q)

δab(θ1θ3 + θ2θ3 + θ1θ4 − θ2θ4) +O
(
e
−π

β
t
)
. (6.46)

There is no growing term in large t, which would be expected from the bulk point of view

if exist. Namely, this contribution could be related to a boundary gaugino which would

give a negative (or, zero) Lyapunov exponent from (1.2).

Summary. Here, we present the summary of the zero mode contribution to the out-of-

time-ordered correlators.
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Channel Zero Mode Contribution

Singlet
〈χiχiχjχj〉,〈χiχibjbj〉,〈bibibjbj〉 βJ

(
1 + 1

2θ1θ2
) (

1 + 1
2θ3θ4

)
e

2π
β
t

〈biχibjχj〉 βJ(θ1 − iθ2)(θ3 − iθ4)e
π
β
t

Anti
〈χiχiχjχj〉 Jt

〈χiχibjbj〉,〈bibibjbj〉,〈biχibjχj〉 No Growth

Symmetric-traceless No Growth

Table 2. Summary of the zero mode contribution to the out-of-time-ordered correlators at large

t. We omitted the SO(q) indices in the four point functions.

6.3 Subleading contribution: non-zero modes

In this section, we will study the contributions of the non-zero mode to the out-of-time-

ordered correlators following [6]. The key idea is to replace the eigenvalue kB
C
in the residue

sum of (4.90), (4.91) and (4.92) with other function kR,C which we will define soon. In non-

SUSY SYK model [6], such a function kR appeared in the diagonalization of the retarded

kernel. In our model, we found that the eigenvalues of the retarded kernel found in [65]

play the same role in evaluation of the non-zero mode contributions. The eigenvalues of

the retarded kernel in the singlet and anti-symmetric channels are given by [65]

kR,S(h) ≡ −
Γ
(
2− 1

q

)
Γ
(
1
2 − h+ 1

q +
1
2

)

Γ
(
1 + 1

q

)
Γ
(
3
2 − h− 1

q +
1
2

) , (6.47)

kR,A(h) ≡
Γ
(
2− 1

q

)
Γ
(
1
2 − h+ 1

q − 1
2

)

Γ
(
1 + 1

q

)
Γ
(
3
2 − h− 1

q − 1
2

) . (6.48)

Note that we will not define kR,ST(h) separately because the eigenvalue kB
ST

is proportional to

kB
A
(i.e., kB

ST
(h) = − 1

q−1k
B
S
(h)) and we can simply use kR,S for the symmetric-traceless chan-

nel. The eigenvalue of the retarded kernel is related to the eigenvalues kB
S/A(h) as follows.

kR,S(1− h)

kB
S
(h)

=
cosπ

(
1
2q − h

2

)

cosπ
(

1
2q +

h
2

) , (6.49)

kR,S(h)

kB
S
(h)

=
h− 1

q

h− 1 + 1
q

sinπ
(

1
2q +

h
2

)

sinπ
(

1
2q − h

2

) , (6.50)

kR,A(1− h)

kB
A
(h)

= (q − 1)
h− 1

q

h− 1 + 1
q

sinπ
(

1
2q − h

2

)

sinπ
(

1
2q +

h
2

) , (6.51)

kR,A(h)

kB
A
(h)

= (q − 1)
cosπ

(
1
2q +

h
2

)

cosπ
(

1
2q − h

2

) . (6.52)
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At particular value of h, they become

kB
S
(h) = kR,S(1− h) (h = 2, 4, 6, · · · ) (6.53)

kB
S
(h) = −

h− 1 + 1
q

h− 1
q

kR,S(h) (h = −1,−3,−5, · · · ) (6.54)

kB
A
(h) = −

h− 1 + 1
q

(q − 1)
(
h− 1

q

)kR,A(1− h) (h = 1, 3, 5, · · · ) (6.55)

kB
A
(h) =

1

q − 1
kR,A(h) (h = −2,−4,−6, · · · ) (6.56)

Unlike non-SUSY SYK model, since the four point function of the SUSY SYK model is

expanded in terms of ΥB
∓,h and ΥB

∓,1−h, we need not only the relation between kR,S/A(1−h)

and kB,S/A(h) but also the relation between kR,,S/A(h) and kB,S/A(h).

We are interested in evaluating the following out-of-time-ordered correlator:
∑

i,j

TR
[
yψi(t, θ1) y ψj(0, θ2) y ψi(t, θ3) y ψj(0, θ4)

]
, (6.57)

where y4 is the thermal density matrix (i.e., y ≡ [ρ(β)]
1
4 ). Note that we omit the SO(q)

indices, but one can easily consider this out-of-time-ordered correlator in each channel.

In [6], this out-of-time-ordered correlator can be evaluated at a particular cross ratio χ =

2(1− i sinh 2π
β t)−1 by analytic continuation from χ > 1 regime. In our case, we will follow

the same calculation of the four point function at particular super-conformal cross ratios

depending on whether we evaluate two point function of bosonic or fermionic bi-local fields.

Let us consider the same configuration of the four point function as in (6.26).

ϕ1 =
π

2
− 2πi

β
t , ϕ2 = −π

2
− 2πi

β
t , ϕ3 = 0 , ϕ4 = π (6.58)

At t = 0, these four points are on the thermal circle. We map (ϕi, θi) to (τi, θ
′
i) on the line

(i = 1, 2, 3, 4) by

τ = tan
ϕ

2
(6.59)

θ′ =

√
1

2
sec2

ϕ

2
θ =

1√
2
sec

ϕ

2
θ (6.60)

In particular, because τ4 = ∞, the super-conformal cross ratio is simplified by

χ =
τ12
τ13

+
τ23
τ213

θ′3θ
′
1 +

θ′2θ
′
3

τ13
(6.61)

ζ = −θ′1θ
′
2 + θ′2θ

′
3 + θ′3θ

′
1

τ13
(6.62)

Setting θ4 to be 0, one can choose either θ1, θ2 or θ3 to be zero. We found that two choices

θ3 = θ4 = 0 and θ2 = θ4 are useful for our purpose.17

17θ1 = θ4 = 0 is also straightforward, and it reproduce a part of results of θ2 = θ4 = 0 case in large t.

But, it does not seem to capture the π
β
Lyapunov exponent.
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• θ3 = θ4 = 0 : for this choice, the super-conformal cross ratios are found to be

χ =
2

1− i sinh 2π
β t

(6.63)

ζ = i
1 + ie

2π
β
t

1− ie
2π
β
t

θ1θ2

cosh 2π
β t

(6.64)

At large t, they are asymptotic to

χ ≃ 4i

e
2π
β
t
+

8

e
4π
β
t
+ · · · (6.65)

ζ ≃
[
− 2i

e
2π
β
t
+ · · ·

]
θ1θ2 (6.66)

From this cross ratio, one can read off the two point functions of bosonic bi-local fields

such as χiχiχjχj or χiχibjbj . We present the large time behavior of two quantities

which appear in the calculation of the four point function:

ζ

χ
≃ −1

2
θ1θ2 + · · · (6.67)

log
1

−iχ
≃ 2π

β
t+ · · · (6.68)

1

−iχ

(
1− ζ

χ

)
≃ 1

4

(
1 +

1

2
θ1θ2

)
e

2π
β
t
+ · · · (6.69)

• θ2 = θ4 = 0 : the super-conformal cross ratio are given by

χ =
2

1− i sinh 2π
β t

− i

(
1 + ie

2π
β
t

1− ie
2π
β
t

)3
θ3θ1√

2
(
cosh π

β t+ i sinh π
β t
) (6.70)

ζ = i
1 + ie

2π
β
t

1− ie
2π
β
t

θ3θ1√
2
(
cosh π

β t+ i sinh π
β t
) (6.71)

The large time behavior of the cross ratios are given by

χ+ ζ ≃ 4i

e
2π
β
t
+

2
√
2(1− i)

e
3π
β
t

θ3θ1 (6.72)

χ ≃ 1√
2
(1− i)e

−π
β
t
θ1θ3 +

4i

e
2π
β
t

(6.73)

ζ ≃ − 1√
2
(1− i)e

−π
β
t
θ1θ3 (6.74)

Also, for the estimation of the contour integral, it is useful to note that

χ
1
2

(
1 +

aζ

χ

)
≃

√
2(1 + i)e

−π
β
t
+ (1 + i)

(
a− 1

2

)
θ1θ3 + · · · (6.75)

where a is a constant. This cross ratio gives two point functions between fermionic

bi-local fields such as 〈biχibjχj〉 or 〈χiχiχjχj〉.
Now, using these super-conformal cross ratios, we will evaluate the out-of-time-ordered

correlators in each channel.
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Singlet channel. For χ > 1, the super-conformal eigenfunction is given by

ΥB
∓,h(χ, ζ) =

(
1 +

hζ

χ

)
F̃∓,h(χ) (6.76)

where the conformal eigenfunction F̃∓,h(χ) (χ > 1) were found in [6, 59, 65]:

F̃−,h(χ) =
Γ
(
1
2 − h

2

)
Γ
(
h
2

)
√
π

2F1

(
h

2
,
1− h

2
,
1

2
,
(χ− 2)2

χ2

)
, (6.77)

F̃+,h(χ) = −2Γ
(
1− h

2

)
Γ
(
h
2 + 1

2

)
√
π

χ− 2

χ
2F1

(
2− h

2
,
h+ 1

2
,
3

2
,
(χ− 2)2

χ2

)
. (6.78)

Using F̃−,h(χ), one can express (4.90) as

FS

α0

∣∣∣∣
non-zero

= −
∞∑

n=1

Res
h=2n

F̃−,h(χ)

2π tan πh
2

(
1 +

hζ

χ

)
kB
S
(h)

1− kB
S
(h)

+
∞∑

n=2

Res
h=2n

F̃−,h(χ)

2π tan πh
2

(
1 +

(1− h)ζ

χ

)
kB
S
(1− h)

1− kB
S
(1− h)

(6.79)

− 1

2πi

∫

C
dh

F̃−,h(χ)

2π tan πh
2

[(
1 +

hζ

χ

)
kB
S
(h)

1− kB
S
(h)

−
(
1 +

(1− h)ζ

χ

)
kB
S
(1− h)

1− kB
S
(1− h)

]∣∣∣∣∣
h= 1

2
+is

where we used

2

tanπh
=

1

tan πh
2

− 1

tan π(1−h)
2

(6.80)

Now, one can replace kB
S
’s in the residue sum with kR,S by using (6.53) and (6.53).

FS

α0

∣∣∣∣
non-zero

= −
∞∑

n=1

Res
h=2n

F̃−,h(χ)

2π tan πh
2

(
1 +

hζ

χ

)
kR,S(1− h)

1− kR,S(1− h)

−
∞∑

n=2

Res
h=2n

F̃−,h(χ)

2π tan πh
2

(
1 +

(1− h)ζ

χ

)
1
q
−h

1−h− 1
q

kR,S(1− h)

1 +
1
q
−h

1−h− 1
q

kR,S(1− h)
(6.81)

− 1

2πi

∫

C
dh

F̃−,h(χ)

2π tan πh
2

[(
1 +

hζ

χ

)
kB
S
(h)

1− kB
S
(h)

−
(
1 +

(1− h)ζ

χ

)
kB
S
(1− h)

1− kB
S
(1− h)

]

We will pull the contour around poles in the residue sum to the contour h = 1
2 + is. Note

that 1−kR,S(1−h) in the denominator of the first term does not have zeros for h > 1
2 . On

the other hand, 1 +
1
q
−h

1−h− 1
q

kR,S(1 − h) has one zero at h = 2 so that the second term has
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double pole at h = 2. Therefore, by pulling the contour, we have

FS

α0

∣∣∣∣
non-zero

=− 1

2πi

∫

C
dh

F̃−,h(χ)

2π tan πh
2

(
1+

hζ

χ

)[
kB
S
(h)

1−kB
S
(h)

− kR,S(1−h)

1−kR,S(1−h)

]

+
1

2πi

∫

C
dh

F̃−,h(χ)

2π tan πh
2

(
1+

(1−h)ζ

χ

)



kB
S
(1−h)

1−kB
S
(1−h)

+

1
q
−h

1−h− 1
q

kR,S(1−h)

1+
1
q
−h

1−h− 1
q

kR,S(1−h)




+Res
h=2

F̃−,h(χ)

2π tan πh
2

(
1+

(1−h)ζ

χ

)
1
q
−h

1−h− 1
q

kR,S(1−h)

1+
1
q
−h

1−h− 1
q

kR,S(1−h)
(6.82)

By analytic continuation of F̃−,h to the regime χ < 1, one can obtain its behavior at

small χ:

F̃−,h(χ) ≃
Γ
(
1
2 − h

2

)
Γ
(
h− 1

2

)

21−hΓ
(
h
2

) (−iχ)1−h + (h −→ 1− h) (6.83)

• θ3 = θ4 = 0 : from (6.67), it is easy to see that the contour integral in (6.82) does not

contain the exponentially growing terms as in the non-SUSY SYK model. The residue

at the double pole h = 2 gives a linear combination of F̃−,2(χ) and ∂hF̃−,h(χ)
∣∣∣
h=2

.

The former leads to e
2π
β
t
which saturates the chaos bound. The contribution from

the latter can be written as

FS,non-zero ∼
log 1

−iχ

−iχ

(
1− ζ

χ

)
∼ te

2π
β
t
(
1 +

1

2
θ1θ2

)
(6.84)

This seems to be faster than the exponential growth from the zero mode. However,

recalling that the zero mode contribution is proportional to βJ , this can be under-

stood as the 1
βJ correction to the (leading) maximal Lyapunov exponent of 〈χiχiχjχj〉

and 〈χiχibjbj〉 as explained in [6]. That is, the 1
βJ correction to a Lyapunov exponent

λL leads to the following 1
βJ sub-leading contribution to the exponential growth:

λL = λ
(0)
L +

1

βJ
λ
(1)
L + · · · =⇒ eλLt = eλ

(0)
L t +

λ
(1)
L

βJ
t eλ

(0)
L t + · · · (6.85)

This is what we have obtained in the non-zero mode contribution.

• θ2 = θ4 = 0 : from (6.75), one can see that the contour integral does not grow

exponentially. On the other hand, the residue at double pole h = 2 is also a linear

combination of F̃−,2(χ) and ∂hF̃−,h(χ)
∣∣∣
h=2

. First, the contribution from the former

becomes
1

−iχ

(
1− ζ

χ

)
≃ 1

4
e

2π
β
t
+

1 + i√
2

1

4
e

π
β
t
θ1θ3 + · · · (6.86)

Note that the first term corresponds to the exponential growth of 〈χiχiχjχj〉 with

the Lyapunov exponent 2π
β while the second term comes from 〈biχibjχj〉 of which
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Lyapunov exponent is π
β . On the other hand, the other contribution of the double

pole can be evaluated by

∂h

[
(−iχ)1−h

(
1 +

(1− h)ζ

χ

)]

h=2

(6.87)

Note that the derivative should be acted on both the exponent and the factor (1−h)ζ
χ ,

which leads to the cancellation of the terms violating the chaos bound. Then, one

can obtain

FS,non-zero ∼ te
2π
β
t
+ te

π
β
t
θ1θ3 (6.88)

where we omit the numerical coefficients. Again, the first and the second term corre-

sponds to the 1
βJ correction to the Lyapunov exponent 2π

β of 〈χiχiχjχj〉 and to the

Lyapunov exponent π
β of 〈biχibjχj〉, respectively.

Anti-symmetric channel. In the same way, one can evaluate the out-of-time-ordered

correlators in the anti-symmetric channel. Using F̃+,h in (6.78), we replace kB
A

with kR,A

in the sum by (6.55) and (6.56), and we pull the contour around the poles to the contour

h = 1
2+is. When pulling the contour, we pick up one double pole at h = 1. Hence, we have

FA

(q − 1)α0
=

1

2πi

∫

C
dh

F̃+,h(χ)

2π cot πh
2

(
1 +

hζ

χ

)



kB
A
(h)

1− kB
A
(h)

+

h−1+ 1
q

(q−1)(h− 1
q
)
kR,A(1− h)

1− h−1+ 1
q

(q−1)(h− 1
q
)
kR,A(1− h)




− 1

2πi

∫

C
dh

F̃+,h(χ)

2π cot πh
2

(
1 +

(1− h)ζ

χ

)[
kB
A
(1− h)

1− kB
A
(1− h)

−
1

q−1kR,A(1− h)

1− 1
q−1kR,A(1− h)

]

+Res
h=1

F̃+,h(χ)

2π cot πh
2

(
1 +

(1− h)ζ

χ

) 1
q−1kR,A(1− h)

1− 1
q−1kR,A(1− h)

(6.89)

where we used
2

tanπh
= − 1

cot πh
2

+
1

cot π(1−h)
2

(6.90)

Noting that the function F̃+,h for small χ behaves as

F̃+,h(χ) ≃ −i
Γ
(
1− h

2

)
Γ
(
h− 1

2

)

21−hΓ
(
1
2 + h

2

) (−iχ)h + (h −→ 1− h) , (6.91)

one can immediately deduce that the contour integral does not grow exponentially because

this is the almost same as that of the singlet channel. For the residue, we will also consider

the two choices of the cross ratios. Because of the double pole, we have the following two

contributions:

F̃+,1(χ) , ∂h

[
F̃+,h(χ)

(
1 +

(1− h)ζ

χ

)]

h=1

(6.92)

F̃+,1(χ) does not have any exponentially growing term for either θ3 = θ4 = 0 or

θ2 = θ4 = 0. Hence, it is enough to consider the second contribution.
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• θ3 = θ4 = 0 : for this case, the conformal ratio χ is the same as one in the non-SUSY

SYK model, and we have

∂h

[
(−iχ)1−h

(
1 +

(1− h)ζ

χ

)]

h=1

= − log(−iχ)− ζ

χ
≃ 2π

β
t+

1

2
θ1θ2 + · · · (6.93)

Hence, there is only a linear growth in large t:

FA,non-zero ∼ t (6.94)

This is the linear growth in the anti-symmetric channel of 〈χiχiχjχj〉, which is consis-

tent with the ρ zero mode contribution in (6.41). Note that there is no growing term

proportional to θ1θ2. This implies that the anti-symmetric channel of 〈bibiχjχj〉 does
not grow at large t, it is also consistent with the ρ zero mode contribution in (6.41).

• θ2 = θ4 = 0 : using (6.70) and (6.71), one has

∂h

[
(−iχ)1−h

(
1 +

(1− h)ζ

χ

)]

h=1

≃ 2π

β
t− (1 + i)e

−π
β
t
θ1θ3 + · · · (6.95)

Hence, the growing term at large t in this channel is

FA,non-zero ∼ t (6.96)

Again, this is consistent with the ρ and k zero mode contributions.

Symmetric-traceless channel. The evaluation of the four point function of the

symmetric-traceless channel is parallel to that of the singlet channel except for the eigen-

value of the kernel:

kB
ST
(h) = − 1

q − 1
kB
S
(h) . (6.97)

Hence, its pole structure is different from that of the singlet channel. In particular, there

is no zero mode in the symmetric-traceless channel. This also agrees with the fact that the

zero modes in the effective action do not contribute to the symmetric-traceless channel.

Therefore, without dropping any term in the four point function, we obtain

FST

(q − 1)α0
=

1

2πi

∫

C
dh

F̃−,h(χ)

2π tan πh
2

(
1 +

hζ

χ

)[
kB
ST
(h)

1− kB
ST
(h)

− kR,ST(1− h)

1− kR,ST(1− h)

]

− 1

2πi

∫

C
dh

F̃−,h(χ)

2π tan πh
2

(
1 +

(1− h)ζ

χ

)



kB
ST
(1− h)

1− kB
ST
(1− h)

+

1
q
−h

1−h− 1
q

kR,ST(1− h)

1 +
1
q
−h

1−h− 1
q

kR,ST(1− h)




− Res
h=h∗

F̃−,h(χ)

2π tan πh
2

(
1 +

(1− h)ζ

χ

)
1
q
−h

1−h− 1
q

kR,ST(1− h)

1 +
1
q
−h

1−h− 1
q

kR,ST(1− h)
(6.98)

where we pick up the simple pole at h = h∗ which is a solution of

1 +

1
q − h∗

1− h∗ − 1
q

kR,ST(1− h∗) = 0

(
1

2
< h∗ < 1

)
(6.99)
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Channel Non-zero Mode Contribution

Singlet
〈χiχiχjχj〉,〈χiχibjbj〉,〈bibibjbj〉

t

β
e

2π
β
t

〈biχibjχj〉
t

β
e

π
β
t

Anti
〈χiχiχjχj〉

t

β

〈χiχibjbj〉,〈bibibjbj〉,〈biχibjχj〉 No Growth

Symmetric-traceless No Growth

Table 3. Summary of the non-zero mode contribution to the out-of-time-ordered correlators at

large t. We omitted the SO(q) indices in the four point functions.

As in the singlet channel, the contour integrals do not contain growing term in large t.

Since h = h∗ is a simple pole, one can consider the following two terms for the residue

contribution:

(−iχ)1−h∗

(
1 + (1− h∗)

ζ

χ

)
, (−iχ)h∗

(
1 + (1− h∗)

ζ

χ

)
(6.100)

• θ3 = θ4 = 0 : since 1
2 < h < 1, (6.100) is exponentially decreasing in t (See (6.63)

and (6.67) ).

• θ2 = θ4 = 0 : from (6.70) and (6.71), we have

(−iχ)h∗

(
1 + (1− h∗)

ζ

χ

)
∼ e

− 2π
β
h∗t + ie

− 2π
β (h∗−

1
2)tθ1θ3 (6.101)

(−iχ)1−h∗

(
1 + (1− h∗)

ζ

χ

)
∼ e

− 2π
β
(1−h∗)t + ie

− 2π
β (

3
2
−h∗)tθ1θ3 (6.102)

where we omitted the numerical factors. Since 1
2 < h∗ < 1, they are exponentially

decreasing in t.

In both cases, there is no growth in large t, which is consistent with the zero mode contri-

butions.

Summary. We summarize the contribution of the non-zero modes to the large time

behavior of the out-of-time-ordered correlators.

7 Conclusion

In this work, we studied N = 1 supersymmetric SYK model with SO(q) global symmetry.

We showed that this model has the emergent super-reparametrization at strong coupling

limit, and the SO(q) global symmetry is enhanced to the ŜO(q) local symmetry. Also,

we demonstrated that the symmetry algebra is the semi-direct product of super-Virasoro

algebra and super-Kac-Moody algebra. The emergent symmetries are spontaneously broken

by the large N classical solution. Furthermore, at finite coupling, the kinetic term breaks
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the emergent symmetries explicitly. This leads to Pseudo-Nambu-Goldstone bosons of

which effective action is super-Schwarzian action plus an action of a super-particle on the

SO(q) group manifold. The bosonic zero mode of the super-Schwarzian effective action

coupled to the bosonic bi-locals in the singlet channel to give the maximum Lyapunov

exponent 2π
β in the corresponding four point function. On the other hand, we showed that

the fermionic zero mode of the super-Schwarzian action is coupled to fermionic bi-locals

in the singlet channel, which leads to the π
β Lyapunov exponent in the out-of-time-ordered

correlator 〈biχibjχj〉. Also, we saw that the bosonic zero mode from the broken ŜO(q)

symmetry gives a linear growth of the out-of-time-ordere correlator 〈χiχiχjχj〉 in the anti-

symmetric channel at large time while fermionc zero mode does not contribute to any

growth. We also evaluate the non-zero mode contributions, and we confirmed that they

provide the 1
βJ correction to the zero mode contributions.

It is easy to consider N = 2 supersymmetry generalization of our model with SO(q)

global symmetry based on theN = 2 SUSY SYKmodel [64, 66] where the bi-local superfield

is composed of one chiral superfield and one anti-chiral superfield and the corresponding

supermatrix formulation was discussed in [66]. For the complex superfield, it would be

more natural to consider SU(q) global symmetry, but it is not straightforward because the

matrix product of bi-locals is valid only between the superspace with the sam chirality

while the flavor indices in the product should be conjugate to each other.

As pointed out in [76] for non-SUSY case, the coadjoint orbit method would be able

to reproduce the low energy effective action for the broken ŜO(q) symmetry. Furthermore,

it would be interesting to study this effective action as a supermatrix model. Like the

Marinari-Parisi supersymmetric matrix model [77], one might be able to analyze it by

eigenvalue distribution18 [78, 79] (at least large q limit), and it is interesting to show that

this effective action is also one-loop exact.

It would be interesting to verify the large N , strong coupling results that we obtained

in this work via exact diagonalization for sufficiently large systems. In particular in this

work, we assumed that the large N solution preserves supersymmetry which can then be

checked via numerical methods. In fact, for the N = 1 SUSY SYK models [64] checked

that this was indeed the case.19

In the maximally chaotic system, one would expect that a generic out-of-time-ordered

correlator would saturate chaos bound. The linear growth in the anti-symmetric channel

implies that the corresponding operators are not generic operator. Indeed, the bi-local

field χiχi in the anti-symmetric channel is related to the SO(q) generator, and therefore, it

might not be surprised that such a special operator does not grow with maximal Lyapunov

exponent. On the other hand, supersymmetric SYK models including our model exhibit

a new exponential growth with Lyapunov exponent π
β . Although this does not violate the

chaos bound, it is not clear how to understand this Lyapunov exponent from the usual

bulk point of view. In the field theory, such a out-of-time-ordered correlated with Lya-

18I thank Robert de Mello Koch for pointing out this.
19Their numerics also showed that the supersymmetry was broken non-perturbatively in the 1/N expan-

sion. This was also consistent with the fact that Witten index for this model vanishes.
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Matrix

Product
Definition

∗ (A ∗B)(τ1, τ2) =

∫
dτ3 A(τ1, τ3)B(τ3, τ2)

◦ (A ◦B)α1α2(τ1, τ2) =

q∑

α3=1

∫
dτ3 Aα1α3(τ1, τ3)B

α3α2(τ3, τ2)

⋆ (A ⋆ B)(τ1, θ1; τ2, θ2) =

∫
A(τ1, θ1; τ3, θ3) dτ3dθ3 B(τ3, θ3; τ2, θ2)

⊛ (A⊛B)α1α2(τ1, θ1; τ2, θ2) =

q∑

α3=1

∫
Aα1α3(τ1, θ1; τ3, θ3) dτ3dθ3 Bα3α2(τ3, θ3; τ2, θ2)

Table 4. Matrix product.

punov exponent π
β does not get a contribution from the bosonic zero mode of the broken

super-reparametrization because of the fermi statistics. This implies that there is an out-

of-time-ordered correlator in the bulk which is not coupled to the boundary graviton but

only to boundary gravitino. This type of correlators would not be captured by the previous

geometrical computation by shock wave [80]. It would be interesting to study the supersym-

metric generalization of the shock wave method to reproduce the Lyapunov exponent π
β .
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A Notations and conventions

For any bi-local superfield, let us use the shorthand notation

A(1, 2) ≡ A(τ1, θ1; τ2, θ2) (A.1)

Then, the functional derivative of S with respect to a bi-local superfieldA(1, 2) is defined via

δS ≡
∫

dµ2dµ1δA(1, 2)
δS

δA(1, 2)
(A.2)
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Trace Definition

tr tr (A) =

q∑

i=1

Aii

≈r ≈r (A) =

∫
dτ A(τ, τ)

Tr Tr (A) =

q∑

i=1

∫
dτ Aii(τ, τ)

str str (A) =

∫
dτdθ A(τ, θ; τ, θ)

STr STr (A) =

q∑

i=1

∫
dτdθ Aii(τ, θ; τ, θ)

Table 5. Trace.

where dµi ≡ dτidθi (i = 1, 2). Note that the delta function (θ1−θ2)δ(τ12) for the superspace

is the identity matrix in the supermatrix formulation, and therefore, it is easy to see that

A(1, 2) =

∫
θ13δ(τ13) dτ3dθ3 A(3, 2) =

∫
A(1, 3) dτ3dθ3 θ32δ(τ32) (A.3)

where θij ≡ θi − θj . Using this, we will consider the functional derivative of (bosonic)

bi-local superfields A−(1, 2) and B+(1, 2) which are anti-symmetric and symmetric in the

bi-local superspace, respectively. i.e.,

A−(1, 2) = −A−(2, 1) ( e.g., ζS , ζST ) (A.4)

B+(1, 2) = B+(2, 1) ( e.g., ζA ) (A.5)

Using (A.3), the variation of A−(1, 2) and B+(1, 2) can be written as

δA−(1, 2) =

∫
θ13δ(τ13) dµ3 δA+(3, 4) dµ4θ42δ(τ42)

=

∫
dµ4dµ3δA+(3, 4)

1

2
[θ31θ42δ(τ31)δ(τ42)− θ32θ41δ(τ31)δ(τ42)] (A.6)

δB+(1, 2) =

∫
θ13δ(τ13) dµ3 δB+(3, 4) dµ4θ42δ(τ42)

=

∫
dµ4dµ3δB+(3, 4)

1

2
[θ31θ42δ(τ31)δ(τ42) + θ32θ41δ(τ31)δ(τ42)] (A.7)

Based on our definition of the bi-local superfield in (A.2), one can read off the following

functional derivatives:

δA−(1, 2)

δA−(3, 4)
=

1

2
[θ31θ42δ(τ31)δ(τ42)− θ32θ41δ(τ31)δ(τ42)] (A.8)

δB+(1, 2)

δB+(3, 4)
=

1

2
[θ31θ42δ(τ31)δ(τ42) + θ32θ41δ(τ31)δ(τ42)] (A.9)

Also, note that the variation of STr logΨ can be expressed as

δ[STr logΨ] = STr (Ψ−1 ⊛ δΨ) =

∫
dµ2Ψ

−1(2, 1)dµ1δΨ(1, 2) (A.10)
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which leads to
δSTr logΨ

δΨ(1, 2)
= Ψ(2, 1) (A.11)

B Shadow representation

In this appendix, we will briefly review the shadow representation for both non-SUSY and

SUSY SYK models based on [56, 59]. We begin with the non-SUSY case first. For two

decoupled CFTs, let us consider a four point function 〈O1(τ1)O2(τ2)O3(τ3)O4(τ4)〉 where
O1 and O2 belong to one CFT and O3 and O4 belong to the other. Then, this correlation

function is factorized into a product of two point functions. Now, let us assume that two

CFTs are coupled by

ǫ

∫
dyVh(y)V ′

1−h(y) (B.1)

where Vh and V1−h is a primary operator in each CFT, respectively. Then, in addition to

the disconnected diagram, the (connected) four point function is given by

〈O1(τ1)O2(τ2)O3(τ3)O4(τ4)〉c = ǫ

∫
dy 〈O1(τ1)O2(τ2)Vh(y)〉

〈
V ′
1−h(y)O3(τ3)O4(τ4)

〉

(B.2)

One can fix the three point functions to be

〈O1(τ1)O2(τ2)Vh(y)〉 =
M(τ1, τ2, y)

|τ1 − τ2|2∆−h|τ1 − y|h|τ2 − y|h (B.3)

〈
V ′
1−h(y)O3(τ3)O4(τ4)

〉
=

M(y, τ3, τ4)

|τ3 − τ4|2∆−1+h|τ3 − y|1−h|τ4 − y|1−h
(B.4)

where M(τ1, τ2, τ3) is responsible for the symmetry of three point function.

For the non-SUSY SYK model, one can expect two bases for four point function:

i.e., anti-symmetric basis (e.g., singlet and symmetric-traceless representation); symmetric

basis (e.g., anti-symmetric). Hence, one may write

M−(τ1, τ2, y) = sgn (τ12)[a+ b sgn (τ1 − y)sgn (τ2 − y)] (B.5)

M+(τ1, τ2, y) = c+ dsgn (τ1 − y)sgn (τ2 − y) (B.6)

where a, b, c, d are constants. In order to restrict M further, we will consider the symmetry

of the four point functions. In particular, we will consider the normalized four point

function of fermions in each channel:

T α1α2
R T α3α4

R

〈ψα1
i (τ1)ψ

α2
i (τ2)ψ

α3
j (τ3)ψ

α4
j (τ4)〉

〈ψγ1
i (τ1)ψ

γ1
i (τ2)〉〈ψγ2

j (τ3)ψ
γ2
j (τ4)〉

(B.7)

Using SL(2,R) symmetry, we can fix the points τ1, τ2, τ3 and τ4 to express it in term of the

cross ratio χ = τ12τ34
τ13τ24

.

τ1 = 0 , τ2 = χ , τ3 = 1 , τ4 = ∞ (B.8)
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Then, the shadow representation gives the following two bases:

Φ−,h(χ) =
1

2

∫ ∞

−∞
dy

|χ|hM−(0, χ, y)M−(y, 1,∞)

|y|h|y − 1|1−h|y − χ|h (B.9)

Φ+,h(χ) =
1

2

∫ ∞

−∞
dy

|χ|hM+(0, χ, y)M+(y, 1,∞)

|y|h|y − 1|1−h|y − χ|h (B.10)

Recall that the exchagne of t1 and t2 corresponds to the following transformation of χ =
τ12τ34
τ13τ24

:

(τ1, τ2) → (τ2, τ1) =⇒ χ → χ

χ− 1
(B.11)

and, similar for (τ3, τ4). Hence, the symmetry20 of the basis is given by

Φh,∓(χ) = ±Φh,±

(
χ

χ− 1

)
(B.12)

In addition, another important symmetry of the basis is the exchange of (τ1, τ2, τ3, τ4) ↔
(τ3, τ4, τ1, τ2). This symmetry corresponds to the following relation of basis.

Φh,∓(χ) = Φ1−h,∓(χ) (B.13)

From these two symmetries, one determine the basis completely:

Φh,−(χ) =
1

2

∫ ∞

−∞
dy

|χ|h
|y|h|y − 1|1−h|y − χ|h (B.14)

Φh,+(χ) =
sgn (χ)

2

∫ ∞

−∞
dy

|χ|hsgn (y)sgn (y − 1)sgn (y − χ)

|y|h|y − 1|1−h|y − χ|h (B.15)

For the SUSY SYK model, the three point function analogous to (B.3) and (B.4) can be

written as

TR
α1α2

〈ψα1
i (τ1, θ1)ψ

α2
i (τ2, θ2)VB

h (τ3, θ3)〉 =
MR(τ1, τ2, τ3)

|〈1, 2〉|2∆−h|〈1, 3〉|h|〈2, 3〉|h (B.16)

TR
α1α2

〈ψα1
i (τ1, θ1)ψ

α2
i (τ2, θ2)VF

h (τ3, θ3)〉 =
MR(τ1, τ2, τ3)sgn (τ12)

|〈1, 2〉|2∆−h|〈1, 3〉|h|〈2, 3〉|hP (1, 2, 3) (B.17)

where the function P (1, 2, 3) is defined by

P (1, 2, 3) =
θ1(τ2 − τ3) + θ2(τ3 − τ1) + θ3(τ1 − τ2)− 2θ1θ2θ3

|〈1, 2〉〈2, 3〉〈3, 1〉| 12
(B.18)

and the function MR(τ1, τ2, τ3) is in general given by

MS/ST(τ1, τ2, τ3) ≡ sgn (τ12)[a+ bsgn (τ13)sgn (τ23)] (B.19)

MA(τ1, τ2, τ3) ≡ a+ bsgn (τ13)sgn (τ23) (B.20)

20Due to the denominator of (B.9) and (B.9), the symmetry of the basis is changed.
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As before, this leads to the basis for the four point functions:

ΥB
−,h =

1

2

∫
dydθy

|〈1, 2〉|h|〈3, 4〉|1/2−hsgn (τ34)M̃P (3, 4, y)

|〈1, y〉|h|〈2, y〉|h|〈3, y〉|1/2−h|〈4, y〉|1/2−h
(B.21)

ΥB
+,h =

1

2

∫
dydθy

|〈1, 2〉|h|〈3, 4〉|1/2−hsgn (τ12)M̃P (3, 4, y)

|〈1, y〉|h|〈2, y〉|h|〈3, y〉|1/2−h|〈4, y〉|1/2−h
(B.22)

where ΥB
−,h is the basis for the singlet and symmetric-traceless channel and ΥB

+,h is for the

anti-symmetric channel. The function M̃ is given by

M̃ = a1 + a2sgn (τ1 − y)sgn (τ2 − y) + a3sgn (τ3 − y)sgn (τ4 − y)

+ a4sgn (τ1 − y)sgn (τ2 − y)sgn (τ3 − y)sgn (τ4 − y) (B.23)

We want to also restrict the function M̃ by using the symmetry of four point function of

the SUSY SYK model. Using OSp(1|2), we choose

τ1 = 0 , τ2 = χ , τ3 = 1 , τ4 = ∞ , θ3 = 0 , θ4 = 0 , ζ = θ1θ2 , (B.24)

and, the basis υB∓,h is simplified to be

ΥB
−,h =

1

2

∫
dydθy

|χ+ ζ|hM̃θy
|y|h|χ− y|h|1− y|1−h

(B.25)

ΥB
+,h =

1

2

∫
dydθy

|χ+ ζ|hsgn (χ)M̃θy
|y|h|χ− y|h|1− y|1−h

(B.26)

where the function M̃ becomes

M̃ = a1 + a2sgn (y)sgn (χ− y) + a3sgn (1− y) + a4sgn (y)sgn (χ− y)sgn (1− y) (B.27)

The symmetry of ΥB
∓,h discussed in (4.42) leads to a3 = a4 = 0 for ΥB

−,h and a1 = a2 = 0

for ΥB
+,h. However, unlike the non-SUSY SYK model, the exchange of (τ1, θ1, τ2, θ2) and

(τ3, θ3, τ4, θ4) does not impose a constraint on the basis but gives the relation between ΥB

and ΥF . Hence, we could not determine the basis in this way. The basis ΥB
−,h chosen in [56]

for N = 1 SUSY SYK model is equivalent to the case where a2 = a3 = a4 = 0. Hence,

we take assumption21 that the other basis ΥB
+,h would correspond to a1 = a2 = a3 = 0.

Therefore, we have

ΥB
−,h(1, 2, 3, 4) =

1

2

∫
dydθy

|〈1, 2〉|h|〈3, 4〉|1/2−hsgn (τ34)P (3, 4, y)

|〈1, y〉|h|〈2, y〉|h|〈3, y〉|1/2−h|〈4, y〉|1/2−h
, (B.28)

ΥB
+,h(1, 2, 3, 4) = −1

2

∫
dydθy

|〈1, 2〉|h|〈3, 4〉|1/2−hsgn (τ12)P (3, 4, y)

|〈1, y〉|h|〈2, y〉|h|〈3, y〉|1/2−h|〈4, y〉|1/2−h

× sgn (τ1 − y)sgn (τ2 − y)sgn (τ3 − y)sgn (τ4 − y) (B.29)

21As in [59], one may claim that V
B/F
h is a composite operator of two fermions with derivative operators

to restrict the form of the three point functions.
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C Effective action

In this appendix, we will derive the effective action by ǫ-expansion of q. We will consider

the super-reparametrization and the ŜO(q) local transformation of the large N classical

solution Ψcl in (3.49) by

τ ′ = f(τ, θ) , θ′ = y(τ, θ) , g(τ, θ) (C.1)

Note that unlike (3.23) this parametrization of the super-reparametrization is constrained

by

Df = yDy (C.2)

Taking

q =
1

1− ǫ
(0 < ǫ < 1) , (C.3)

the ǫ-expansion of the transformed classical solution can be written as

Ψcl,[(f,y),g](1, 2) = Λg(1)g−1(2)
[D1y1D2y2]

1
q

|f1 − f2 − y1y2|
1
q

(C.4)

=
1

[(q − 1)α0]
1
q

g(1)g−1(2)
D1y1D2y2

|J(f1 − f2 − y1y2)|

[
1− ǫ log Ω +

1

2
ǫ2 (log Ω)2 + · · ·

]

where α0 ≡ 2π
(q−1) tan π

2q
and Ω is defined by

Ω ≡ D1y1D2y2
|J(f1 − f2 − y1y2)|

(C.5)

where fi ≡ f(τi, θi) and yi ≡ y(τi, θi) (i = 1, 2). We will analyze STr (D ⊛Ψcl) of (C.4)

order by order in ǫ. For this, it is useful to consider the Taylor expansion of f1 − f2 − y1y2
and D1y1. Using the constraint in (C.2), we found

D1y1 =
∑

n=0

1

n!
D2

[
(τ12 − θ1θ2)

n∂n
τ2y2

]
(C.6)

f(τ1, θ1) = f(τ2, θ2) +
∞∑

n=1

1

n!
D2

[
(τ12 − θ1θ2)

n∂n−1
τ2 D2f(τ2, θ2)

]
(C.7)

In particular, (C.7) can be simplified to be

f1 − f2 − y1y2

= (τ12 − θ1θ2)[Dy]
2 +

1

2
D2

[
(τ12 − θ1θ2)

2(D2yDy)
]
+

1

2
(τ12 − θ1θ2)

2DyD3y

+
1

6
D2

[
(τ12 − θ1θ2)

3(DyD4y + 2D2yD3y)
]
+

1

6
(τ12 − θ1θ2)

3DyD5y + · · · (C.8)
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Leading contribution. Let us consider the super-reparametrization for now. Us-

ing (C.6) and (C.8), we have an expansion in L

D1y1Dy2
f1 − f2 − y1y2

(C.9)

=
1

L
+

1

2
θ12

D42y2
D2y2

− θ12
D22y2D

3
2y2

[D2y2]2
+

1

6
L
D52y2
D2y2

+
1

6
L
D22y2D

4
2y2

[D2y2]2
− 1

3
L
D32y2D

3
2y2

[D2y2]2
+ · · ·

where L is defined by

L ≡ τ12 − θ1θ2 (C.10)

To evaluate STr (D ⊛ Ψcl), it is convenient to use supermatrix notation. Recall that a

Grassmann even bi-local superfield A can be represented by the Grassmann odd superma-

trix:

A =

(
A1 A3

A0 A2

)
(C.11)

Since the super-derivative matrix D in (3.18) is a Grassmann odd supermatrix, D⊛A is

Grassmann even supermatrix. Hence, its super-trace becomes

STrD⊛A = Tr [∂τ1A0 −A3] (C.12)

From (C.9), one can read off the components of its supermatrix representation. In partic-

ular, we are interested in the following two components:

[
D1y1Dy2

f1 − f2 − y1y2

]

0

=
1

τ12
+ τ12F (τ2) + · · ·

[
D1y1Dy2

f1 − f2 − y1y2

]

3

= − 1

τ212
− 1

2

[
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

]

2

+ F (τ2) + · · · (C.13)

where the ellipsis represents vanishing terms in the limit τ12 → 0. Then, we have

STr

[
D

D1y1Dy2
f1 − f2 − y1y2

]
=

1

2

∫
dτ

[
D4y

Dy
− 2

D2yD3y

[Dy]2

]

2

=
1

2

∫
dτdθ

[
D4y

Dy
− 2

D2yD3y

[Dy]2

]

(C.14)

For the ŜO(q) transformation, we consider the following expansion:

g(τ1, θ1)g
−1(τ2, θ2)

τ1 − τ2 − θ1θ2
=

[
1

L
I +

θ12D2g2 · g−1
2

L
+ D22g2 · g−1

2 + θ12D
3
2g2 · g−1

2

+
1

2
LD42g2 · g−1

2 +
1

2
θ12LD

4
2g2 · g−1

2 + · · ·
]
. (C.15)

From this expansion, one can easily read off the components

[
g(τ1, θ1)g

−1(τ2, θ2)

τ1 − τ2 − θ1θ2

]

0

=
1

τ12
I + [D22g2 · g−1

2 ]1 + τ12F
′(τ2) + · · · (C.16)

[
g(τ1, θ1)g

−1(τ2, θ2)

τ1 − τ2 − θ1θ2

]

3

= − 1

τ212
I − 1

τ12
[D2g2 · g−1

2 ]2 −
[
D32g2 · g−1

2

]
2
+ F ′(τ2) + · · ·
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where the ellipsis denotes vanishing terms in the limit τ12 → 0. Then, the super-trace is

given by

STr

[
D

g(τ1, θ1)g
−1(τ2, θ2)

τ1 − τ2 − θ1θ2

]
=

∫
dτdθ Tr [D32g2 · g−1

2 ] (C.17)

In general, the super-reparametrization and the ŜO(q) local transformation leads to

D1y1Dy2
f1−f2−y1y2

g(τ1, θ1)g
−1(τ2, θ2)

=

[
1

L
+
1

2
θ12

D42y2
D2y2

−θ12
D22y2D

3
2y2

[D2y2]2
+ · · ·

]
I+θ12

[
1

L
+ · · ·

]
D2g2 ·g−1

2 +[1+ · · · ]D22g2 ·g−1
2

+θ12 [1+ · · · ]D32g2 ·g−1
2 +

1

2
[L+ · · · ]D42g2 ·g−1

2 (C.18)

In the same way, we have

STr

[
D⊛

(
D1y1Dy2

f1 − f2 − y1y2
g(τ1, θ1)g

−1(τ2, θ2)

)]

=

∫
dτdθ

[
1

2

(
D4y

Dy
− 2

D2yD3y

[Dy]2

)
tr I +Tr [D32g2 · g−1

2 ]

]
(C.19)

Sub-leading contribution. Now, we will consider the sub-leading contribution of (C.4).

The expansion of log Ω in L is given by

log

(
D1y1Dy2

f1 − f2 − y1y2

)
= − logL+ log

[
1 +

1

2
θ12L

D42y2
D2y2

− θ12L
D22y2D

3
2y2

[D2y2]2
+ · · ·

]

= − logL+
1

2
θ12L

(
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

)
+ · · · (C.20)

Together with (C.9) and the expansion g1g
−1
2 , the expansion of the sub-leading contribution

becomes

D1y1Dy2
f1 − f2 − y1y2

log

(
D1y1Dy2

f1 − f2 − y1y2

)
g(τ1, θ1)g

−1(τ2, θ2)

=

[
− logL

L
+

1

2
θ12

(
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

)
− 1

2
θ12 logL

(
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

)
+ · · ·

]
I

− logL

L
θ12D2g2 · g−1

2 − θ12 logLD
3
2g2 · g−1

2 + · · · (C.21)

Reading off the components which are necessary in evaluating the effective action
[

D1y1Dy2
f1 − f2 − y1y2

log

(
D1y1Dy2

f1 − f2 − y1y2

)]

0

(C.22)

=
log τ12
τ12

+ · · · ,
[

D1y1Dy2
f1 − f2 − y1y2

log

(
D1y1Dy2

f1 − f2 − y1y2

)]

3

(C.23)

= −−1 + log τ12
τ212

− 1

2

[
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

]

2

+
log τ12

2

[
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

]

2

+ · · · ,
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we have

− ǫD1

[
D⊛

{
D1y1Dy2

f1 − f2 − y1y2
log

(
D1y1Dy2

f1 − f2 − y1y2

)}]

= −ǫ

∫
dτ

1

2

[
D4y

Dy
− 2

D2yD3y

[Dy]2

]

2

= −ǫ

∫
dτdθ

1

2

[
D4y

Dy
− 2

D2yD3y

[Dy]2

]
(C.24)

Sub-sub-leading contribution. In the same way, we found

D1y1Dy2
f1−f2−y1y2

[
log

(
D1y1Dy2

f1−f2−y1y2

)]2
g(τ1,θ1)g

−1(τ2,θ2)

=

[
(−logL)2

L
−θ12 logL

(
D42y2
D2y2

−2
D22y2D

3
2y2

[D2y2]2

)
+
1

2
θ12(−logL)2

(
D42y2
D2y2

−2
D22y2D

3
2y2

[D2y2]2

)
+···

]
I

+
(−logL)2

L
θ12D2g2 ·g−1

2 +L(−logL)2D22g2 ·g−1
2 +θ12(−logL)2D32g2 ·g−1

2 +··· (C.25)

and the contribution to the effective action vanishes in the limit τ12 → 0:

1

2
(−ǫ)2STr

[
D⊛

(
D1y1Dy2

f1 − f2 − y1y2
g1g

−1
2

[
log

(
D1y1Dy2

f1 − f2 − y1y2

)]2)]
= 0 (C.26)

Vanishing divergence in the ǫ-expansion. In the higher order in ǫ, one can easily see

that the most terms vanish in the limit τ12 because they are proportional to τn12(log τ12)
m

(n,m > 0). However, there are terms proportional to (log τ12)
n (m > 0), and it is not

immediate to see whether they vanish or not until we evaluate the super-trace. Hence,

we will collect this type of terms in all orders in ǫ. First, there are such diverging terms

proportional to D2g2 · g−1
2 :

(
D1y1Dy2

f1 − f2 − y1y2

) 1
q

g(τ1, θ1)g
−1(τ2, θ2) =

1

L
θ12D2g2 · g−1

2

∞∑

n=1

(−ǫ)n

n!
(− log τ12)

n + · · ·

(C.27)

which vanish because

tr D2g2 · g−1
2 = 0 (C.28)

In addition, the rest of the divergent terms are summed up to be

(
D1y1Dy2

f1 − f2 − y1y2

) 1
q

g(τ1, θ1)g
−1(τ2, θ2)

=⇒
[
1

2
θ12

(
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

)
I + θ12D

3
2g2 · g−1

2

]
eǫ log τ12 + · · ·

− ǫeǫ log τ12
1

2
θ12

(
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

)
I (C.29)
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Hence, only one component of the supermatrix gives a contribution to the super-trace (with

super-derivative):
[(

D1y1Dy2
f1 − f2 − y1y2

) 1
q

g(τ1, θ1)g
−1(τ2, θ2)

]

3

= −
(
1

2

[
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

]

2

I +
[
D32g2 · g−1

2

]
2

)
eǫ log τ12

+
1

2

[
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

]

2

Iǫeǫ log τ12 (C.30)

and, it vanishes in the limit τ12 → 0 because ǫ > 0:

− lim
τ1→τ2

(
1

2

[
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

]

2

I +
[
D32g2 · g−1

2

]
2

)
eǫ log τ12 = 0 (C.31)

lim
τ1→τ2

1

2

[
D42y2
D2y2

− 2
D22y2D

3
2y2

[D2y2]2

]

2

Iǫeǫ log τ12 = 0 (C.32)

Total. In sum, we have

− N

2
STr [D⊛Ψcl]ǫ-expansion (C.33)

= − N

4(q − 1)
1
qα

1
q

0

∫
dτdθ

(
D4y

Dy
− 2

D2yD3y

[Dy]2

)
− N

2(q − 1)
1
qα

1
q

0

∫
dτdθtr (D3g · g−1) .

where α0 ≡ 2π
(q−1) tan π

2q
. Note that the leading and the subleading terms in the ǫ-expansion

contribute to (C.33) while the higher order terms vanishes.

D Zero mode eigenfunctions

In section 6.2, we evaluate the variation of the classical solution at finite temperature with

respect to the infinitesimal super-reparametrization and the infinitesimal ŜO(q) local trans-

formation. In this analysis, we have not specify the form of each zero mode eigenfunction

because the variation of the classical solution is enough to evaluate the contribution to the

leading Lyapunov. In fact, the variation of the classical solution includes the zero mode

eigenfunctions, and we present them with their normalization. From (6.23), (6.33), (6.38)

and (6.44), one can read off the zero mode eigenfunction V
(s)
n (s = 2, 32 , 1,

1
2):

• Bosonic part of super-reparametrization:

V (2)
n ≡ e−in

ϕ1+ϕ2
2

(
1 +

1
2θ1θ2

sin
(ϕ1−ϕ2

2

)
)[

−n cos

(
n
ϕ1 − ϕ2

2

)
+

sin
(
nϕ1−ϕ2

2

)

tan
(ϕ1−ϕ2

2

)
]
.

(D.1)

• Fermionic part of super-reparametrization:

V (3/2)
n ≡ e−in

ϕ1+ϕ2
2

[
θ1 + θ2

2

(
cot

ϕ12

4
sin

nϕ12

2
− 2n cos

nϕ12

2

)

−θ1 − θ2
2

i
(
tan

ϕ12

4
cos

nϕ12

2
− 2n sin

nϕ12

2

)]
. (D.2)

– 54 –
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• Bosonic part of ŜO(q) local symmetry:

V (1)
n ≡ e−in

ϕ1+ϕ2
2 sin

(
n
ϕ1 − ϕ2

2

)
. (D.3)

• Fermionic part of ŜO(q) local symmetry:

V (1/2)
n ≡ e−in

ϕ1+ϕ2
2

[
cos

(
n
ϕ1 − ϕ2

2

)
θ1 − θ2

2
− i sin

(
n
ϕ1 − ϕ2

2

)
θ1 + θ2

2

]
. (D.4)

Defining the inner product by

〈V (s)
n , V (s′)

m 〉 ≡
∫

dϕ1dϕ2dθ1dθ2

sin
(ϕ1−ϕ2

2

)
− 1

2θ1θ2
V (s)
n (1, 2)V (s′)

m (1, 2) , (D.5)

the inner product of the zero mode eigenfunctions are given by

〈V (2)
n , V (2)

m 〉 = 2π2|n|(n2 − 1)δn+m,0 (D.6)

〈V ( 3
2
)

n , V
( 3
2
)

m 〉 = −8π2isgn (n)

(
n2 − 1

4

)
δn+m,0 (D.7)

〈V (1)
n , V (1)

m 〉 = 2π2|n|δn+m,0 (D.8)

〈V ( 1
2
)

n , V
( 1
2
)

m 〉 = 2π2isgn (n)δn+m,0 (D.9)

where others vanish.
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